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Geometric inflexibility and 3-manifolds that fiber over the circle

Jeffrey Brock and Kenneth Bromberg

Abstract

We prove that hyperbolic 3-manifolds are geometrically inflexible: a unit quasiconformal
deformation of a Kleinian group extends to an equivariant bi-Lipschitz diffeomorphism between
quotients whose pointwise bi-Lipschitz constant decays exponentially in the distance from the
boundary of the convex core for points in the thick part. Estimates at points in the thin part are
controlled by similar estimates on the complex lengths of short curves. We use this inflexibility
to give a new proof of the convergence of pseudo-Anosov double iteration on the quasi-Fuchsian
space of a closed surface, and the resulting hyperbolization theorem for closed 3-manifolds that
fiber over the circle with pseudo-Anosov monodromy.

1. Introduction

In the study of hyperbolic structures on 3-manifolds, the rigidity theorems of Mostow and
Sullivan allow for coarse methods to play a key role in the classification of structures up to
isometry: it suffices to exhibit a uniformly bi-Lipschitz map between two hyperbolic 3-manifolds
with the same asymptotic data to conclude that they are in fact isometric.

A general theme in the work of Thurston has been the notion of limiting to rigidity, wherein
a family of hyperbolic structures has a quasiconformally rigid limit. Such discussions suggest a
qualitative notion of inflexibility for manifolds far out in the sequence: a unit quasiconformal
deformation at infinity has an exponentially deteriorating effect at the basepoint as the
geometry freezes around it.

This qualitative notion was made more precise for manifolds with injectivity radius bounds
by McMullen (see [30]), but the assumption of injectivity bounds is very restrictive. Though
upper bounds on the injectivity radius in the convex core follow from tameness (now known
for arbitrary M with finitely generated π1 (see [1, 17])), the lower bound is nongeneric
[19, 20, 29]. In this paper we prove an exponential decay theorem for the L2-norm of a
harmonic deformation of a hyperbolic 3-manifold. This allows us to prove inflexibility theorems
for arbitrary hyperbolic 3-manifolds. Here is a sample theorem which generalizes McMullen’s
result.

Theorem 1.1 (Geometric Inflexibility). Given a hyperbolic 3-manifold M, a K-bi-
Lipschitz diffeomorphic hyperbolic 3-manifold M ′ and an ε > 0, there is a diffeomorphism
Φ: M →M ′ whose bi-Lipschitz distortion in the ε-thick part of the convex core C(M) decays
exponentially with the distance from ∂C(M) with the rate of decay depending only on ε, K
and the topology of ∂M .

See Theorem 5.6 for a more precise version.
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Although Theorem 1.1 does not give estimates on the bi-Lipschitz constant in the thin part,
this is to be expected. Indeed, there are harmonic deformations whose distortion within a
Margulis tube is roughly constant over the tube and does not decay in the depth into the
tube; the pointwise bounds on the distortion (the strain) are determined by its behavior on
the boundary of the tube. In this sense, Theorem 1.1 is sharp, and in fact optimal, in that we
can only expect at best exponential decay of the bi-Lipschitz constant in the thick part.

On the other hand, the proof of Theorem 1.1 is quite robust and applies to a variety of other
situations. For example, we can control the ratio of the change in the length of moderate length
geodesics by constants that exponentially decay in the depth of the geodesic in the convex
core. We obtain similar control over short geodesics by measuring the depth of their entire
Margulis tubes. In a future paper we will apply our methods to deformations of hyperbolic
cone-manifolds where the depth is measured by distance from the singular locus. For both
smooth, complete hyperbolic manifolds and for cone-manifolds, the Schwarzian derivative can
be similarly controlled at components of the conformal boundary that are fixed under the
deformation.

We emphasize that while McMullen’s inflexibility theorem is ultimately a consequence of the
compactness of hyperbolic 3-manifolds with injectivity radius bounds and basepoints in the
convex core, our arguments harness explicit analytic estimates on the pointwise L2-norm of
the deformation to obtain sharp estimates on the bi-Lipschitz distortion of a deformation at
infinity.

1.1. Convergence results

Inflexibility provides for new approaches and techniques in the theory of Kleinian groups. To
outline these results, we briefly recall notions from their deformation theory.

Given a closed surface S of negative Euler characteristic, the Teichmüller space Teich(S)
parameterizes pairs (f,X) of marked hyperbolic surfaces

f : S −→ X,

where f is a homeomorphism up to marking-preserving isometry. The modular group Mod(S) of
isotopy classes of orientation-preserving self-homeomorphisms of S acts naturally on Teich(S)
by ϕ(f,X) = (f ◦ ϕ−1,X). A mapping class is pseudo-Anosov if, for each essential isotopy class
of simple closed curves γ, we have ϕn(γ) �� γ for n �= 0.

Bers proved that, for each pair (X,Y ) ∈ Teich(S) × Teich(S), there is a unique quasi-
Fuchsian simultaneous uniformization, namely, a single Kleinian group Γ ∼= π1(S) for which
Γ leaves invariant a directed Jordan curve Λ in Ĉ with the property that Ĉ \ Λ = ΩX � ΩY ,
where ΩX/Γ = X and ΩY /Γ = Y (see [4]).

As a tool in the deformation theory of Kleinian groups, Theorem 1.1 guarantees convergence
in certain cases where the depth in the convex core at the basepoint diverges quickly enough.
In particular, Theorem 1.1 gives a new proof of Thurston’s double limit theorem for pseudo-
Anosov iteration, the main step in the hyperbolization for 3-manifolds that fiber over the circle
with pseudo-Anosov monodromy (see [30, 35, 40]).

Theorem 1.2 (Pseudo-Anosov Double Limits). For each X and Y in the Teichmüller
space Teich(S), and each pseudo-Anosov mapping class ψ ∈ Mod(S), the double iteration
Q(ψ−n(X), ψn(Y )) converges algebraically and geometrically to a limit Q∞ ∈ AH(S).

See Theorem 8.3. Note that the convergence up to subsequence was proved earlier by
Thurston (see [40]). Convergence was later proved in [21]; McMullen gave a more explicit
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treatment in [30]. Note that in our result the quasiconformal rigidity of the limit is a direct
consequence of the geometric inflexibility theorem.

Because for each n the manifold Qn = Q(ψ−n(X), ψn(Y )) admits a uniformly bi-Lipschitz
diffeomorphism Ψn in the homotopy class of ψ, we may apply the inflexibility theorem to obtain
an isometry Ψ: Q∞ → Q∞ in the homotopy class of ψ. The quotient Q∞/〈Ψ〉 is a hyperbolic
3-manifold with the homotopy type of Tψ, which is thus homeomorphic to Tψ by a theorem of
Stallings. We arrive at Thurston’s original theorem.

Theorem 1.3 (Thurston) (Mapping Torus Hyperbolic). Let ψ ∈ Mod(S) be pseudo-
Anosov. Then the mapping torus Tψ = S × [0, 1]/(x, 0) ∼ (ψ(x), 1) admits a complete hyper-
bolic structure.

1.2. Curve complex distance and convex core width

To describe how Theorem 1.2 follows from Theorem 1.1, we remark that one key step is show
linear growth of the width of the convex core in terms of the iterate of the pseudo-Anosov
applied to each factor. As the width of the core grows, the geometric effect of the next iterate
decays at the basepoint exponentially fast, and convergence follows.

To show that the growth in width is linear, however, the combinatorial properties of curves
on surfaces play a crucial role. The collection of isotopy classes S of essential simple closed
curves on S can be encoded as a graph C(S) with vertices corresponding to elements of S
and edges joining vertices if their corresponding classes can be represented by disjoint curves
on S. This graph has the structure of a δ-hyperbolic metric space if each edge is assigned
length 1 (see [27]). Though C(S) can be given the structure of a complex by associating
k-simplices to (k + 1)-tuples of vertices whose representatives can be realized disjointly, these
higher-dimensional simplices do not play a role here.

Among the many reflections of the combinatorics of C(S) in the geometry of hyperbolic
3-manifolds, the width of the convex core of a quasi-Fuchsian manifold is an important new
example. We show the following.

Corollary 1.4 (Wide Cores). Given a closed surface S, there is linear function f such
that the distance between the boundary components of the convex core C(Q(X,Y )) of a
quasi-Fuchsian manifold Q(X,Y ) in QF (S) is bounded below by f(dC(X,Y )).

(See Corollary 7.18.) Here, the distance dC(X,Y ) is shorthand: if S has genus g, there is
a uniform Lg > 0 so that, for each X ∈ Teich(S), the length of the shortest essential closed
loop on X is bounded by Lg. Furthermore, any two shortest loops have uniformly bounded
intersection, by the collar lemma. It follows that there is a coarsely defined map from Teich(S)
to the complex of curves, that sends each X to the collection of vertices whose simple closed
curves have length less than Lg on X. Then dC(X,Y ) measures the maximal distance in C(S)
between shortest curves on X and on Y .

Since the action of pseudo-Anosov iteration has linear growth in the curve complex, it follows
that the width of the convex core of the double pseudo-Anosov iteration

Q(ψ−n(X), ψn(Y ))

is linear in n. Combining these estimates on core width with Theorem 1.1, Geometric
Inflexibility, we obtain Thurston’s original result.

It should be noted, however, that Theorem 1.2 is a convergence theorem rather than a
compactness theorem. In particular, the rigidity of the limit is implicit in the proof. As such,



4 JEFFREY BROCK AND KENNETH BROMBERG

where Thurston’s original proof appealed to Sullivan’s rigidity theorem after showing that the
limit has limit set all of Ĉ, the existence of a hyperbolic structure on the mapping torus for ψ
here is self-contained.

We remark that the linear growth in the width of the convex core with distance between the
bounded length curves on its boundary in C(S) is not specific to pseudo-Anosov deformations.
In particular, the methods of Theorem 1.2 extend immediately to apply to the sequences
{Q(Xn, Yn)}n of quasi-Fuchsian manifolds for which we have the bounds dT (Xn,Xn+1) � K
and dT (Yn, Yn+1) � K, and the curve complex distance dC(Xn, Yn) grows linearly with n.

1.3. Ending laminations and efficient approximations

We remark that a key further application of Theorem 1.1 will be a new approach to the
ending lamination conjecture [12] via efficient approximations by maximal cusps. In short,
Minsky’s a priori bounds theorem [32] guarantees that, for any hyperbolic 3-manifold M in
the boundary of a Bers slice BY = {Q(X,Y ) : Y ∈ Teich(S)}, there is an essentially canonical
sequence of maximal simplices Pn ∈ C(S) with Pn → λ, λ ∈ ∂C(S) (the boundary point λ is the
ending lamination for M), whose corresponding curves arise with uniformly bounded length

M (Pn) < L in M .

By an application of the grafting technique of [11, 14] together with a covering argument
as outlined in the forthcoming paper by the second author and Juan Souto, we may, in effect,
drill Pn out of M to obtain a maximal cusp Cn ∈ ∂BY , by a deformation that has a bounded
effect on the geometry in a compact core M ⊂M . By the inflexibility theorem, the effect of
this process on the geometry of M decays with the distance of the geodesic representatives
of the curves in Pn from M. It follows that the sequence Cn converges back to M . Since Pn
depend only on λ, it follows that λ determines M . We take up this approach in a sequel with
Richard Evans and Juan Souto.

1.4. Plan of the paper

A significant component of the paper involves the study of harmonic deformations of hyperbolic
3-manifolds. In particular, estimates relating the decay of the norm of the strain field induced
by a deformation to the depth in the convex core have been absent from prior treatments.
The second portion of the paper develops geometric limit arguments vis-à-vis the complex of
curves. The paper concludes with our proof of the convergence of pseudo-Anosov iteration and
double iteration on quasi-Fuchsian space, exhibiting explicitly the hyperbolic structure on the
pseudo-Anosov mapping torus Tψ.

2. Deformations

Let M be a 3-manifold and gt be a one-parameter family of hyperbolic metrics on M with Dt

the covariant derivative for the Riemannian connection for gt. At time t = 0 we let g = g0 and
D = D0. We define the time zero derivative η of gt by the formula

dgt(v, w)
dt

∣∣∣∣
t=0

= 2g(η(v), w).

Then η is a symmetric tensor of type (1, 1). We define the pointwise norm of η at p by choosing
an orthonormal basis {e1, e2, e3} for TpM in the g-metric and setting

‖η‖2 =
∑
i

g(η(ei), η(ei)).
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Note that this L2-norm bounds the sup norm from above so that we have

‖η(v)‖ � ‖η‖‖v‖.
If ηt is the time t derivative of gt and ‖ηt‖ � K for all t ∈ [0, T ], then by integrating we see
that

e−2KT g(v, v) � gT (v, v) � e2KT g(v, v).

In particular, the identity map on M is a eKT -bi-Lipschitz map from (M, g) to (M, gT ).
We can also use η to bound the change in the complex length of geodesics. Let γ be an

essential closed curve inM and let Lγ(t) = 
γ(t) + ıθγ(t) be the complex length of the holonomy
of γ in the gt-metric. The following proposition is a combination of [13, Proposition 4.3 and
Lemma 4.6].

Proposition 2.1. Let the harmonic strain field η be the time zero derivative of a family
of hyperbolic metrics Mt = (M, gt). Let γ be an essential simple closed curve in M and Lγ(t) =

γ(t) + ıθγ(t) be its complex length in Mt. Let γ∗ be the geodesic representative of γ in M0.

(i) If the pointwise norms of η and Dη are bounded by K on γ∗, then

|L′
γ(0)| �

√
2
3
K
γ(0).

(ii) If γ∗ has a tubular neighborhood U of radius R, then

∫
U

‖η‖2 + ‖Dη‖2 �
( |L′

γ(t)|
2
γ(t)

)2( sinhR
coshR

)(
2 +

1
cosh2R

)
area ∂U.

When the derivative η is a harmonic strain field there are a number of formulas that are very
useful in controlling the norm of η. Before stating these formulas, we define harmonic. Given
a family of hyperbolic metrics (M, gt) around each point, we can find a one-parameter family
of H

3-charts (U, φt) for the hyperbolic structure induced by the gt-metric. These charts can be
viewed as a flow on a neighborhood in H

3. Let v be the vector field on U that is the pullback
of the time zero derivative of this flow. We then observe symDv = η. This follows from the
fact that, for vector fields u and w on M, the derivative

dgt(u,w)
dt

∣∣∣∣
t=0

is exactly the Lie derivative of g(u,w) along the vector field v.
The trace of symDv is the divergence of v and it measures the infinitesimal change in volume.

The traceless part sym0Dv is the strain of v and it measures the infinitesimal change in the
conformal structure. The vector field v is harmonic if

D∗Dv + 2v = 0.

Here D∗ is the formal adjoint of D. The factor of 2 arises from the fact that the Ricci curvature
of a hyperbolic manifold is −2, and the normalization guarantees that infinitesimal isometries
are harmonic. We say that a strain field η is harmonic if locally there is a divergence-free and
harmonic vector field v with η = symDv.

Finally we note that if η is a harmonic strain field, then ∗Dη is also a harmonic strain
field where ∗ is the Hodge star operator (see [25, Proposition 2.6]). While we are only really
interested in controlling the size of η, we see throughout the paper that our formulas will also
involve ∗Dη and we shall also control its size along the way.



6 JEFFREY BROCK AND KENNETH BROMBERG

3. Infinitesimal inflexibility

The following formula is our key tool for calculating the L2-norm of a harmonic strain field. It
is [25, Proposition 1.3], along with the calculations on p. 36 of the same paper.

Proposition 3.1 (Hodgson–Kerkchoff). Let M be a compact manifold with piecewise
smooth boundary and η be a harmonic strain field. Then

∫
M

‖η‖2 + ‖Dη‖2 =
∫
∂M

∗Dη ∧ η.

The following inequality will allow us to control the boundary term in terms of pointwise
bounds on the norms of η and Dη.

Lemma 3.2. We have ‖η‖2 + ‖Dη‖2 � 2‖ ∗Dη ∧ η‖.

Proof. The inequality follows from the fact that ‖η − ∗Dη‖2 � 0.

The following lemma is the first step in showing that the formula from Proposition 3.1 holds
on some noncompact manifolds if the strain field is bounded.

Lemma 3.3. Let M be a complete hyperbolic 3-manifold that is exhausted by compact
submanifolds Mn with the area of ∂Mn bounded above. If η is a harmonic strain field with the
pointwise norms ‖η‖ and ‖Dη‖ bounded above, then the L2-norm of η and Dη is finite.

Proof. By Proposition 3.1,
∫
Mn

‖η‖2 + ‖Dη‖2 =
∫
∂Mn

∗Dη ∧ η.

Since both the area of ∂Mn and the pointwise norms of η and Dη are bounded, Lemma 3.2
implies that the right-hand side is bounded. This implies that the L2-norm on M is finite.

Let Pn be a finite (1/n)-net on ∂M . Define

M(t) = {p ∈M | d(p, ∂M) � t}
and

Mn(t) = {p ∈M | d(p, Pn) � t}.

Lemma 3.4. For all but an isolated set of t > 1/n, Mn(t) is a manifold with piecewise
smooth boundary.

Proof. If the boundary of Mn(t) is not a manifold with piecewise smooth boundary, then
there is a geodesic of length 2t in M with endpoints in Pn. The set of lengths of geodesics in
M with endpoints in Pn is a discrete subset of R, so Mn(t) must be a manifold with piecewise
smooth boundary for all but an isolated set of values for t.
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Lemma 3.5. Let M be a hyperbolic 3-manifold with piecewise smooth, compact boundary
and let η be a harmonic strain field on M . If η and Dη have finite L2-norm on M, then∫

M

‖η‖2 + ‖Dη‖2 =
∫
∂M

∗Dη ∧ η.

Proof. Fix a net Pn and a T > 0 such that the T -neighborhood of Pn contains ∂M and
Mn(T ) is a manifold with piecewise smooth boundary. If we apply Proposition 3.1 to M \
Mn(T ) and rearrange terms, we have∫

M

‖η‖2 + ‖Dη‖2 =
∫
∂M

∗Dη ∧ η −
∫
∂Mn(T )

∗Dη ∧ η +
∫
Mn(T )

‖η‖2 + ‖Dη‖2.

By Lemma 3.4 we can choose a sequence of ti → ∞ such that Mn(ti) is a manifold with
piecewise smooth boundary. We now apply Proposition 3.1 again to see that∫

Mn(T )

‖η‖2 + ‖Dη‖2 =
∫
∂Mn(T )

∗Dη ∧ η − lim
i→∞

∫
∂Mn(ti)

∗Dη ∧ η.

The function

f(t) =
∫
∂Mn(t)

(‖η‖2 + ‖Dη‖2) dA

is defined for all but a discrete set of t and therefore∫
Mn(T )

‖η‖2 + ‖Dη‖2 =
∫∞

T

f(t) dt.

Since the L2-norm of η and Dη is finite on Mn(T ), we have

lim
t→∞f(t) = 0

and in particular f(ti) → 0. Lemma 3.2 then implies that

f(ti) � 2

∣∣∣∣∣
∫
∂Mn(ti)

∗Dη ∧ η
∣∣∣∣∣ .

Therefore

lim
i→∞

∫
∂Mn(ti)

∗Dη ∧ η = 0

and ∫
Mn(T )

‖η‖2 + ‖Dη‖2 =
∫
∂Mn(T )

∗Dη ∧ η.

Combining this last equality with the first equality in the proof gives us the lemma.

Remark. Sullivan’s rigidity theorem, which guarantees that a quasiconformal deformation
of a finitely generated Kleinian group Γ with support in the limit set is trivial, played a
central role in Thurston’s original proof of the existence of hyperbolic structures on fibered
3-manifolds. Thurston [39] and Bonahon [7] subsequently observed that Sullivan rigidity [38]
follows somewhat more directly if one assumes the tameness of M = H

3/Γ, namely that M is
homeomorphic to the interior of a compact 3-manifold (cf. [30, § 3]).

Lemmas 3.3 and 3.5 give another perspective on Sullivan’s result. In particular, any Γ-
invariant Beltrami differential extends continuously via an averaging process to a harmonic
strain field η on M with the pointwise norms of η and Dη uniformly bounded. If M is tame,
then the limit set of Γ has measure zero or is all of Ĉ, by Canary’s [18] result that tameness
implies Ahlfors’ measure conjecture. In the former case, any Beltrami differential supported
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on the limit set is trivial. In the latter case tameness also implies that M is exhausted by
submanifolds whose boundary has uniformly bounded area, and Lemma 3.3 implies that the
L2-norms of η and Dη are finite on M . Since M has no boundary, Lemma 3.5 implies that
η = Dη = 0 and the initial Beltrami differential must be trivial.

The following theorem is the key analytic estimate that underlies all of our inflexibility
theorems. It should be compared with [30, Theorem 2.15].

Theorem 3.6. Let M be a hyperbolic 3-manifold with compact boundary and let η be a
harmonic strain field on M . Assume that the L2-norms ‖η‖2 and ‖Dη‖2 are finite. Then∫

M(t)

‖η‖2 + ‖Dη‖2 � e−2t

∫
M

‖η‖2 + ‖Dη‖2.

Proof. We will show that∫
Mn(t)

‖η‖2 + ‖Dη‖2 � e−2(t−2/n)

∫
Mn(2/n)

‖η‖2 + ‖Dη‖2. (3.1)

Taking the limit of this inequality as n→ ∞ will imply the theorem.
Let

f(t) =
∫
Mn(t)

‖η‖2 + ‖Dη‖2.

By Lemma 3.4 we can write

f(T ) =
∫∞

T

∫
∂Mn(t)

(‖η‖2 + ‖Dη‖2
)
dAdt

for T > 1/n. Therefore

−f ′(t) =
∫
∂Mn(t)

(‖η‖2 + ‖Dη‖2
)
dA

� 2
∫
∂Mn(t)

∗Dη ∧ η

� 2f(t).

Integrating both sides of this inequality from 2/n to infinity implies (3.1).

To go from L2-bounds, on η to pointwise bounds, we use the following mean value theorem
of Hodgson and Kerckhoff. A proof can be found in [13].

Theorem 3.7. Let η be a harmonic strain field on a ball B of radius R < π/2 centered at
a point p. Then

‖η(p)‖ � 3
√

2 volB
4πf(R)

√∫
B

‖η‖2

where f(R) = cosh(R) sin(
√

2R) −√
2 sinh(R) cos(

√
2R).

We also recall the Margulis thick–thin decomposition for hyperbolic surfaces and 3-manifolds.
If M is a Riemannian manifold, then the injectivity radius injM : M → R

+ measures the radius
of the maximal embedded metric ball at each point. The ε-thin part of M , denoted by M<ε,
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is the set of points x in M for which injM (x) < ε. Likewise the ε-thick part M�ε of M is the
set of x for which injM (x) � ε.

Lemma 3.8 (Margulis) (Thick–Thin Decomposition). There exists ε2 > 0 so that
if X is a hyperbolic surface and ε � ε2, then every component of X<ε is either the open
metric R-neighborhood of a simple closed geodesic, R > 0, or an open horosphere modulo a
discrete parabolic Z action.

There exists ε3 > 0 so that if M is a complete hyperbolic 3-manifold and ε � ε3, then every
component of M<ε is either the open metric tubular R-neighborhood Tε(γ) of a simple closed
geodesic γ in M, or an open horoball modulo a discrete parabolic Z or Z ⊕ Z action.

The tube Tε(γ) is called a Margulis tube, and the horoball quotients are called rank-1 or rank-
2 cusps depending on whether the action is by a Z or Z ⊕ Z parabolic subgroup of PSL2(C).
We employ the notation Tε3(γ) = T(γ).

We now apply Theorems 3.6 and 3.7 to obtain pointwise bounds on η.

Theorem 3.9. Let M be a complete hyperbolic 3-manifold with compact boundary and
let η be a harmonic strain field on M . Then

‖η(p)‖ � A(ε)e−d(p,∂M)

√∫
M

‖η‖2 + ‖Dη‖2,

where p ∈M�ε and

A(ε) =
3eε
√

2 vol(B)
4πf(ε)

with the function f defined in Theorem 3.7.

Proof. Let B be the ball of radius ε centered at p. Then B lies in M(d(p, ∂M) − ε). By
Theorem 3.6, ∫

B

‖η‖2 �
∫
B

‖η‖2 + ‖Dη‖2

�
∫
M(d(p,∂M)−ε)

‖η‖2 + ‖Dη‖2

� e−2(d(p,∂M)−ε)
∫
M

‖η‖2 + ‖Dη‖2.

We then apply Theorem 3.7 to finish the proof.

We can also control the derivative of the length of a closed geodesic.

Theorem 3.10. Let the harmonic strain field η be the time zero derivative of a family
of hyperbolic metrics Mt = (M, gt), where M is a 3-manifold with compact boundary. Let γ
be an essential simple closed curve in M and Lγ(t) = 
γ(t) + ıθγ(t) be its complex length in
Mt. Let γ∗ be the geodesic representative of γ in M0.

(i) If γ∗ is contained in M�ε
0 , then

|L′
γ(0)| � A(ε)e−d(γ

∗,∂M)
γ(0)

√
2
3

∫
M

‖η‖2 + ‖Dη‖2,

where A(ε) is the function given in Theorem 3.9.
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(ii) If γ∗ has a tubular neighborhood U of radius R, then

|L′
γ(0)| � C(R)e−d(U,∂M)
γ(0)

√∫
M

‖η‖2 + ‖Dη‖2

area(∂U)
,

where 1/C(R) = 2 tanhR
(
2 + 1/ cosh2R

)
.

Proof. (i) Applying Theorem 3.9, we see that on γ∗ the pointwise norm of η and Dη is
bounded by A(ε)e−d(γ

∗,∂M)
√‖η‖2 + ‖Dη‖2. We then apply (i) of Proposition 2.1 to complete

the proof of part (i).
(ii) By Theorem 3.6,∫

U

‖η‖2 + ‖Dη‖2 � e−d(U,∂M)

∫
M

‖η‖2 + ‖Dη‖2.

Part (ii) of Proposition 2.1 completes the proof of part (ii).

4. Inflexibility

There are two types of deformations of hyperbolic 3-manifolds that can be studied with
our methods: quasiconformal deformations, namely, quasiconformal conjugacies of their
uniformizing Kleinian groups, and cone-manifold deformations, deformations of a singular cone-
manifold structure wherein the cone-angle at the cone locus varies. In this paper we restrict
to quasiconformal deformations but the two general global inflexibility theorems we prove in
this section can also be applied to the study of cone-manifolds. We shall carry this out in a
subsequent paper.

Theorem 4.1. Let gt be a one-parameter family of hyperbolic metrics on a 3-manifold
M with t ∈ [a, b]. Let ηt be the time t derivative of the metrics gt and let Nt be a family of
3-dimensional submanifolds of M such that ηt is a harmonic strain field on Nt. Also assume
that √∫

Nt

‖ηt‖2 + ‖Dtηt‖2 � K

for some K > 0. Let p be a point in M such that, for all t ∈ [a, b], p is in M�ε
t and

dMt
(p,M \Nt) � d,

where d > ε. Then

log bilip(Φt, p) � (t− a)KA(ε)e−d,

where Φt is the identity map from Ma to Mt and A(ε) is the function from Theorem 3.9.

Proof. Since d > ε, the ε-neighborhood of p is contained in Nt and is at least distance d− ε
from ∂Nt. An application of Theorem 3.9 gives us

‖ηt(p)‖ � KA(ε)e−d.

Integrating we get

log bilip(Φt, p) � (t− a)KA(ε)e−d,

as desired.
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Though the previous result gives no control over the bi-Lipschitz constant of the map Φ
in the thin part, we may instead demonstrate exponential decay of the change in length of
short curves in Margulis thin parts, which controls the geometry of the thin part itself. Here,
the decay is measured in terms of the distance of the corresponding Margulis tube from the
boundary. For completeness, we also bound the change in length of curves that are not short.

Theorem 4.2. Let gt be a one-parameter family of hyperbolic metrics on a 3-manifold
M with t ∈ [a, b]. Let ηt be the time t derivative of the metrics gt and let Nt be a family
of submanifolds of M such that ηt is a harmonic strain field on Nt. Also assume that√∫

Nt

‖ηt‖2 + ‖Dtηt‖2 � K

for some K > 0. Let γt be the geodesic representative on (M, gt) of a closed curve γ and let

γ(t) be the length of γ.

(i) Assume that γt is in M�ε
t for all t ∈ [a, b], and that

dMt
(γt,M \Nt) � d.

Then ∣∣∣∣log

γ(b)

γ(a)

∣∣∣∣ �
√

2
3
A(ε)(b− a)Ke−d.

(ii) Assume that γt has a tubular neighborhood Ut of radius at least R and the area of ∂Ut
is at least B. Also assume that

dMt
(Ut,M \Nt) � d

for all t ∈ [a, b]. Then ∣∣∣∣log

γ(b)

γ(a)

∣∣∣∣ � C(R)(b− a)Ke−d√
B

,

where C(R) is the function from Theorem 3.10.

Proof. Both inequalities are obtained by integrating the estimates of Theorem 3.10.

Remark. Although in the above theorem we only control the real lengths of closed
geodesics, it is straightforward to control their complex lengths. In particular if Lγ(t) is the
complex length of γ in (M, gt), then we can view ıLγ(t) as a point in the upper half-space model
of H

2. Then the quantities on the right-hand side of the inequalities bound the hyperbolic
distance between ıLγ(a) and ıLγ(b). Note that this hyperbolic distance is an upper bound on
the log of the ratio of real lengths, so such a hyperbolic distance bound implies the inequalities
in Theorem 4.2.

5. Quasiconformal deformations

We now apply the results of the previous section to quasiconformal deformations. We begin
reviewing some standard definitions.

Let M be a complete, orientable, hyperbolic 3-manifold. Its universal cover is naturally
identified with H

3, and M may be recovered as the quotient M = H
3/Γ of H

3 by a Kleinian
group Γ, namely, a discrete subgroup of Isom+(H3). The natural action of Γ on Ĉ by Möbius
transformations partitions Ĉ into its domain of discontinuity Ω, the largest subset of Ĉ where
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Γ acts properly discontinuously, and its limit set Λ. Then the Kleinian manifold quotient
(H3 ∪ Ω)/Γ is a 3-manifold with conformal boundary Ω/Γ.

A K-quasiconformal deformation of a complete, orientable, hyperbolic 3-manifold M0 is
a map Ψ : M0 →M1 to a complete hyperbolic 3-manifold M1 such that the lift Ψ̃ : H

3 →
H

3 to the universal covers extends continuously to a K-quasiconformal map of Ĉ. If Ψ is a
K-quasiconformal deformation, then it will extend to a K-quasiconformal map between the
conformal boundaries of M0 and M1.

The following result is due to Reimann [36] using the work of Ahlfors [2] and Thurston [39].
For a self-contained exposition, see [30]. It is an essential tool for the work that follows.

Theorem 5.1 (Reimann). Let Ψ : M0 →M1 be a K-quasiconformal deformation of
the complete hyperbolic 3-manifold M0. Then there exists a one-parameter family Mt =
(M, gt), t ∈ [0, 1], of hyperbolic 3-manifolds with time t derivative ηt such that the following
conditions holds.

(i) The ηt are harmonic strain fields and ‖ηt‖∞, ‖Dtηt‖∞ � 3k, where k = 1
2 logK.

(ii) Let Φt : M0 →Mt be the identity map on M . Then Φt is K3/2-bi-Lipschitz and Φ1 is
homotopic to Ψ.

The convex cores C(Mt) of the one-parameter family Mt will play the role of Nt when we
apply Theorems 4.1 and 4.2 to Mt.

Lemma 5.2. Let M be a complete hyperbolic 3-manifold such that π1(M) is finitely
generated and assume that M has no rank-1 cusps. Let η be a harmonic strain field on M
such that the norms of η and Dη are pointwise bounded by k. Then∫

C(M)

‖η‖2 + ‖Dη‖2 � area(∂C(M))k2.

Proof. We first replace the convex core with its ε-neighborhood Cε(M). While the boundary
of the convex core may not be smooth, the boundary of Cε(M) will be C1. We also note that
area(∂Cε(M)) → area(∂C(M)) as ε→ 0.

Since π1(M) is finitely generated, the M are both topologically and geometrically tame
[1, 17]. In particular the convex cores C(M) will be exhausted by submanifolds whose boundary
has uniformly bounded area. Since the norms of η and Dη are uniformly bounded, we can apply
Proposition 3.1 and Lemma 3.2 to see that the L2-norms of η and Dη are uniformly bounded
on these submanifolds, which implies that the L2-norms of η and Dη are finite on Cε(M).

Applying Lemma 3.5 to Cε(M) and taking a limit as ε→ 0 gives us the lemma.

To make sure that objects deep in the convex core of C(M0) stay deep in the convex core of
C(M1), we use the fact that bi-Lipschitz maps of H

3 take convex subsets of H
3 to quasiconvex

sets, a general feature of quasi-isometries between δ-hyperbolic spaces. While this section only
applies this observation for hyperbolic space, we will later make use of this more general
version in the setting of manifolds with pinched negative curvature, so we give more general
form. Sometimes known as the Morse lemma, Theorem 1.7 in Chapter of III.H of [10] is one
reference.

Theorem 5.3. Given constants L > 1 and ε ∈ (0, 1), there exists a K > 0 such that
the following holds. Let X0 and X1 be complete, simply connected Riemannian manifolds
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with sectional curvatures lying in (−1 − ε,−1 + ε), and let Φ : X0 → X1 be an L-bi-Lipschitz
diffeomorphism. Then the Φ-image of a convex set in X0 is K-quasiconvex in X1.

An example of a convex set is a geodesic; its image under a bi-Lipschitz map is an example
of a quasigeodesic. A more common way to state the above theorem is that in a space with
pinched negative curvature, a quasigeodesic is a bounded Hausdorff distance from a geodesic.
In fact this is how the result is stated in [10], but it is not hard to see that this implies the
above theorem.

On application of the above theorem, we obtain the following proposition.

Proposition 5.4. Given B > 1 and ε ∈ (0, 1), there exists d > 0 such that the following
holds. Let g0 and g1 be complete Riemannian metrics on a manifold M with sectional
curvatures in (−1 − ε,−1 + ε) and let φ : (M, g0) → (M, g1) be B-bi-Lipschitz. Then the
Hausdorff distance between C(M, g1) and φ(C(M, g0)) is less than d.

Proof. For hyperbolic manifolds this is [30, Proposition 2.16]. It follows from Theorem 5.3
and the fact that every point in the convex hull of a set is a uniform distance from a geodesic
with endpoints in the set. Using the work of Anderson [3], Bowditch [9] proved this last fact
for manifolds with pinched negative curvature where the uniformity constants depend on the
pinching constants. Using Bowditch’s work, McMullen’s proof extends to the setting we have
here.

The following is [30, Corollary 2.17]. The proof is a straightforward application of
Proposition 5.4.

Lemma 5.5. Let Φ : M0 →M1 be an L-bi-Lipschitz diffeomorphism between complete
hyperbolic 3-manifolds. Then there exists a constant d such that

d(Φ(p),M1 \ core(M1)) � d(p,M0 \ core(M0))
L

− d.

We are now ready to prove our first inflexibility theorem for quasiconformal deformations.

Theorem 5.6. Let M0 and M1 be complete hyperbolic structures on a 3-manifold M such
that M1 is a K-quasiconformal deformation of M0, π1(M) is finitely generated, and M0 has
no rank-1 cusps. Then there is a bi-Lipschitz diffeomorphism

Φ: M0 −→M1

whose pointwise bi-Lipschitz constant satisfies

log bilip(Φ, p) � C1e
−C2d(p,M0\core(M0))

where p is in M�ε
0 , and C1 and C2 depend only on K, ε and area(∂ core(M0)).

Proof. Let Mt = (M, gt) be the one-parameter family of hyperbolic manifolds given by
Theorem 5.1 with ηt the derivative of the metrics and

Φt : M0 −→Mt
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the given maps. By Lemma 5.2 we have∫
C(Mt)

‖ηt‖2 + ‖Dtηt‖2 � area(∂C(Mt))9k2.

Lemma 5.5 guarantees

d(Φt(p),Mt \ C(Mt)) � d(p,M0 \ C(M0))
K3/2

− d.

Since by Theorem 5.1 the Φt are K3/2-bi-Lipschitz, we have p ∈M�ε′
t for all t, where ε′ =

ε/K3/2. The result then follows from Theorem 4.1 with Φ = Φ1 the desired map.

For points in the thin part, the above theorem fails to yield good estimates, but this is not
surprising. Indeed, one can construct examples of harmonic strain fields on Margulis tubes,
where the pointwise L2-norm is roughly constant and does not decay with depth into the tube.
Rather, one expects the pointwise norm of the strain at a point in a Margulis tube to depend
on the depth of the boundary of the tube. Rather than pursue such a line of argument, we
bound the change in length of short geodesics where, again, the bounds will depend on the
depth of the boundary of the Margulis tube and not the short geodesic. Such a bound is the
natural thing to expect and suffices for applications.

For completeness we also give bounds on the change in length of curves that have bounded
length but are not necessarily short. We must first show that an essential curve whose geodesic
representative lies deep in the convex core of M0 also has a geodesic representative in M1 deep
in the convex core.

Proposition 5.7. Let M0 = (M, g0) and M1 = (M, g1) be hyperbolic 3-manifolds that are
L-bi-Lipschitz diffeomorphic. Let ε be a positive constant such that Lε < ε3. Then there exists
a constant d = d(L, ε) such that the following holds. Let γ be an essential closed curve in M
and γ0 and γ1 be its geodesic representatives in M0 and M1, respectively.

(i) We have

d(γ1,M1 − C(M1)) � d(γ0,M0 − C(M0))
L

− d.

(ii) If 
M0(γ0) � 2ε/L, then

d(T1
ε(γ),M1 − C(M1)) � d(T0

ε(γ),M0 − C(M0))
L

− d

where T
1ε(γ) and T

0ε(γ) denote the Margulis tubes about γ in M1 and M0, respectively.

Proof. Let Φ : M0 →M1 be the L-bi-Lipschitz diffeomorphism. Let q be a point on γ1 with

d(q,M1 − C(M1)) = d(γ1,M1 − C(M1)).

By Theorem 5.3, the Hausdorff distance between Φ(γ0) and γ1 is bounded by K where K only
depends on L, so there exists a q′ ∈ Φ(γ0) with d(q, q′) � K. Let p = Φ−1(q′). Then

d(p,M0 − C(M0)) � d(γ0,M0 − C(M0)).

An application of Lemma 5.5 to p gives us (i).
The proof of (ii) is similar with one change. Again let q be a point on ∂T

1
ε(γ) such that

d(q,M1 − C(M1)) = d(T1
ε(γ),M1 − C(M1)).

The collar T
1
Lε(γ) − T

1
ε/L(γ) will contain ∂Φ(T0

ε(γ)) and the inclusion will be a homotopy
equivalence since Φ(T0

ε(γ)) is not contained in the collar. By [15] the width of the collar is
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bounded above by some W depending only on ε and L. Therefore there exists a q′ ∈ ∂Φ(T0
ε(γ))

such that d(q, q′) � W . The rest of the proof is the same as in (i).

We can now control the length of geodesics under quasiconformal deformations.

Theorem 5.8. Let M1 = (M, g1) be a K-quasiconformal deformation of the hyperbolic
3-manifold M0 = (M, g0) with finitely generated fundamental group and no rank-1 cusps. Let
γ be an essential simple closed curve in M, and γ0 and γ1 be its geodesic representatives in M0

and M1, respectively. Choose ε > 0 such that εK3/2 < ε3, and let L > 2ε > 0. Then there exist
constants C1 and C2 depending on K, ε, L and area(∂C(M0)) such that the following holds.

(i) If 2ε � 
(γ0) � L, then∣∣∣∣log

(γ1)

(γ0)

∣∣∣∣ � C1e
−C2d(γ0,M0−C(M0)).

(ii) If 
(γ0) � 2ε, then ∣∣∣∣log

(γ1)

(γ0)

∣∣∣∣ � C1e
−C2d(T

0
ε(γ),M0−C(M0)).

Proof. As with the proof of Theorem 5.6 we now only need to put together the pieces. We
use Theorem 4.2, our generic inflexibility theorem for lengths of curves. To apply this result, we
use the family of deformations given by Theorem 5.1 where the bound on the L2-norms of the
strain fields inside the convex core comes from Lemma 5.2. Finally, Proposition 5.7 guarantees
that geodesics and tubes that are deep in the convex core stay deep in the convex core. The
theorem then follows from an application of Theorem 5.6.

Remark. It is easy to see that both Theorems 5.6 and 5.8 hold for geometrically finite
hyperbolic manifolds with rank-1 cusps. To see this, let M<δ

c be a set of points in the rank-1
cusps of M that have injectivity radius less than δ. If M is geometrically finite, then Cδc (M) =
C(M) \M<δ

c will be compact, and Theorems 5.6 and 5.8 will hold if we replace C(M) with
Cδc (M). We also note that area(∂Cδc (M)) → area(C(M)) as δ → 0 and, for all p ∈ C(M), there
exists a δp such that if δ < δp, then

d(p,M \ Cδc (M)) = d(p,M \ C(M)).

Therefore if we let δ → 0, we recover Theorems 5.6 and 5.8 as stated above.
In fact, the above argument applies whenever Cδc (M) is a manifold with compact boundary,

as is the case when either the intersection of each rank-1 cusp with the convex core has finite
volume or the entire rank-1 cusp is contained in the convex core.

We expect both theorems hold for any hyperbolic 3-manifold with finitely generated
fundamental group.

6. Schwarzian derivatives

The conformal boundary of a hyperbolic 3-manifold also has a projective structure. In this
section we obtain bounds on how this projective boundary changes during a quasiconformal
deformation. We begin with some background on projective structures. One reference for this
material is [22].

A complex projective structure on a surface S can be defined in two equivalent ways. First, a
complex projective structure is an atlas of charts to Ĉ whose transition functions are restrictions
of Möbius transformations. Second, a projective structure is a developing pair (D, ρ), where
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D : S̃ → Ĉ is a local homeomorphism and ρ is the representation of π1(S) in PSL2 C for which
D ◦ g(x) = ρ(g) ◦D(x) for all g ∈ π1(S) and x ∈ S̃. The map D is a developing map and ρ
is the holonomy representation. An atlas determines a developing pair and a developing pair
determines an atlas.

A projective structure determines a conformal structure on S, but distinct projective
structures may have the same underlying conformal structure. If X is a conformal structure on
S, then we let P (X) denote the space of projective structures on S with conformal structure
X.

Note that the charts that define a conformal structure on the boundary at infinity of a
hyperbolic 3-manifold also define a projective structure. We refer to this projective structure
as the projective boundary of the manifold. We are interested in controlling how the projective
boundary changes under a deformation fixing the conformal boundary.

The difference between two projective structures Σ0 and Σ1 in P (X) is measured by a
quadratic differential Φ determined via the Schwarzian derivative. If f is the conformal map
between Σ0 and Σ1, then the Schwarzian derivative of f is the quadratic differential

Φ =

[(
fzz
fz

)
z

− 1
2

(
fzz
fz

)2
]
dz2

where the derivatives are taken in projective charts for Σ0 and Σ1. We can then define
d(Σ0,Σ1) = ‖Φ‖∞, where ‖Φ‖∞ is the sup-norm taken with respect to the hyperbolic metric
on X.

There is also an infinitesimal version of the Schwarzian. If Σt is a smooth path in P (X)
from Σ0 to Σ1, then the Schwarzians from Σ0 to Σt determine a smooth path of quadratic
differentials. The time t derivative Φt of this path is also a quadratic differential. The following
inequality will be useful for bounding d(Σ0,Σ1):

‖Φ‖∞ �
∫1

0

‖Φt‖∞ dt.

For each hyperbolic structure X there is a unique Fuchsian projective structure ΣF in P (X).
For an arbitrary Σ ∈ P (X) we define ‖Σ‖F = d(Σ,ΣF ).

A key substantive difference between a conformal structure and a projective structure is
that the latter carries a well-defined notion of a round disk. Let Σ be a projective structure.
Then a round disk on Σ is a projective map from a round disk in Ĉ to Σ. If M is a hyperbolic
3-manifold, then a half-space in M is a local isometry from a half-space in H

3 to M . Note
that the projective boundary of a half-space in H

3 is a round disk, so every half-space in a
hyperbolic 3-manifold extends to a round disk on the projective boundary.

The following result is our generic inflexibility theorem for Schwarzian derivatives. It should
be compared with Theorems 4.1 and 4.2. In a future paper we will apply this result to hyperbolic
cone-manifolds.

Theorem 6.1. Let gt, t ∈ [a, b], be a one-parameter family of hyperbolic metrics on the
interior of a 3-manifold M with boundary. Let ηt be the time t derivative of the metrics gt and
let Nt be a family of submanifolds of M with compact boundary such that ηt is a harmonic
strain field on Nt. Also assume that√∫

Nt

‖ηt‖2 + ‖Dtηt‖2 � K

for some K > 0. Let S be a component of ∂M such that each hyperbolic metric gt extends to
a fixed conformal structure X on S and a family of projective structures Σt on S. Assume that
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every embedded round disk in Σt bounds an embedded half-space H in Nt and that

dMt
(H,M \Nt) � d

for some d > 0. Then

d(Σa,Σb) � CKe−d,

where C is a constant depending on ‖Σa‖F and the injectivity radius of the hyperbolic metric
on X.

Proof. Let H be an embedded half-space in Mt bounding a round disk in Σt. By
Theorem 3.6 we have ∫

H

‖ηt‖2 + ‖Dtηt‖2 � K2e−2d.

Let Φt be the holomorphic quadratic differential that is the time t derivative of the family of
projective structures Σt. Then by [13, Theorem 5.5] we have

K2e−2d � 2

√
2π
3

tanh2(κ/2)
1 + 2‖Σt‖F ‖Φt‖∞,

where κ is the injectivity radius of the hyperbolic structure on X. Integrating this inequality
completes the proof of the theorem. For details see the proof of [13, Theorem 1.3].

We now apply this theorem to quasiconformal deformations of complete hyperbolic manifolds
where some components of the conformal boundary are fixed. We are interested in measuring
the change in projective structures for these fixed components of the conformal boundary.
A typical example is the deformation of a quasi-Fuchsian manifold in a Bers slice (see, for
example, Theorem 8.2).

Let M be a complete hyperbolic 3-manifold. Then each component X of the conformal
boundary of M will bound a component of M \ C(M), the complement of the convex core.
Label this component N (X) which should be thought of as a standard neighborhood of X in
M . If X is a union of components of the projective boundary, then N (X) is the corresponding
union of components of M \ C(M).

If Mt is a one-parameter family of complete hyperbolic structures and X is a component
of conformal boundary that is fixed under the deformation, then the notation N (X) does not
distinguish which manifold the neighborhood lies in. In this situation we use the projective
structure on X to label the end; namely, if Σt is the projective boundary for X in the manifold
Mt, then N (Σt) is the neighborhood N (X) in Mt.

Theorem 5.1 gave us a one-parameter family of hyperbolic manifolds interpolating between
the domain and range of a quasiconformal deformation. We need to use this result again but we
also need to know that the corresponding strain fields are L2 in a neighborhood of those ends
of the boundary where the deformation is conformal. For convenience we restate Theorem 5.1
as part of the theorem below.

Theorem 6.2. Let Ψ : M0 →M1 be a K-quasiconformal deformation of the complete ori-
entable hyperbolic 3-manifold M0. Then there exists a one-parameter family, Mt = (M, gt), t ∈
[0, 1], of hyperbolic metrics gt with time t derivative ηt such that the following hold.

(i) The ηt are harmonic strain fields and ‖ηt‖∞, ‖Dtηt‖∞ � 3k, where k = 1
2 logK.

(ii) Let Φt : M0 →Mt be the identity map on M . Then Φt is K3/2-bi-Lipschitz and Φ1 is
homotopic to Ψ.
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(iii) Let X be a union of components of the conformal boundary M0 such that Ψ extends
to a conformal map on X. Then Φt extends to a conformal map on X for all t and∫

N (Φt(X))

‖ηt‖2 + ‖Dtηt‖2 <∞.

Proof. We only need to prove (iii) as (i) and (ii) are exactly the same as Theorem 5.1. The
fact that Φt is conformal on X follows directly from the construction in [36]. To establish the
L2-bounds, we lift ηt to a harmonic strain field η̃t on the universal cover H

3. Then η̃t is the
visual extension of a Beltrami differential μt on Ĉ. By construction, μt will be zero on Φ̃t(ΩX),
where ΩX is the component of the domain of discontinuity that descends to X.

Let p be a point in N (Φt(X)). There is a unique point q in ∂C(Mt) which is nearest to p.
Let σ be the shortest geodesic between p and q, let σ̃ be a lift of this geodesic to H

3 and let p̃
and q̃ be the endpoints of this geodesic which lie in the pre-images of p and q, respectively. Let
P be the hyperbolic plane in H

3 that contains q̃ and is perpendicular to σ̃. The boundary of
P is a circle in Ĉ that bounds a disk D contained in Φ̃t(ΩX). An easy calculation shows that
in the visual measure based at p̃, the ratio of the area of D to the area of the entire sphere is
tanh d(p, q). This implies that

‖ηt(p)‖ = ‖η̃t(p)‖ � C(1 − tanh d(p, q)) ∼ 2Ce−2d(p,q),

where C is a constant that only depends on ‖μt‖∞. The area of the surface obtained by taking
the locus of points in N (Φt(X)) a distance d from ∂C(Mt) grows like e2d. Together these two
estimates imply that the integral of ‖ηt‖2 over N (Φt(X)) is finite.

To estimate the norm of ‖Dtηt‖, we note that the lift of this strain field is obtained by
averaging ıμt, so the same argument shows that it has finite L2-norm on N (Φt(X)).

We can now prove the quasiconformal deformation version of our inflexibility theorem for
Schwarzian derivatives.

Theorem 6.3. Let Ψ : M0 →M1 be a K-quasiconformal deformation of complete, hyper-
bolic 3-manifolds. Assume that the conformal boundary of M0 is the disjoint union of two
collections of components X and Y and that Ψ extends to a conformal map on X. Let Σ0

be the projective structure on X and Σ1 be the projective structure on Ψ(X). Let d be the
minimal distance between N (X) and N (Y ) in M0. Then

d(Σ0,Σ1) � C0e
−C1d,

where C0 and C1 depend only on K, the area of the hyperbolic structure on Y, ‖Σ0‖F and the
injectivity radius of the hyperbolic structure on X.

Proof. We want to apply Theorem 6.1. Let Mt be the one-parameter family of hyperbolic
3-manifolds given by Theorem 6.2. Then the submanifolds Nt will be the union of the convex
cores C(Mt) and the neighborhoods N (Σt). By Lemma 5.2 the L2-norm of ηt and Dtηt is
finite on C(Mt), and by (iii) of Theorem 6.2 these L2-norms are finite on N (Σt). Therefore
the L2-norms are finite on the union Nt. Just as in Lemma 5.2 the boundary of ∂Nt will not
be piecewise smooth. This can be dealt with exactly as in the proof of Lemma 5.2 and we can
apply Lemma 5.5 to see that ∫

Nt

‖ηt‖2 + ‖Dtηt‖2 � area(Y )9k2

where area(Y ) is the area of the hyperbolic structure on Y .
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The maps Φt : M0 →Mt areK3/2-bi-Lipschitz and such a map between hyperbolic manifolds
will take a convex set to a K0-quasiconvex set where K0 depends on K. Applying this fact
to Φ−1

t , we see that the Hausdorff distance between Φt(C(M0)) and C(M0) is bounded by a
constant K1, which again only depends on K. In particular, the distance between N (Φt(X))
and N (Φt(Y )) is bounded below by d/K3/2 −K1.

Finally we see that if D is a round disk in Ĉ bounding a half-space in H, then D descends to
an embedded disk in the projective boundary of Mt if every deck transformation for Mt takes
D off itself. But if this is the case, the same will hold for H, so H will descend to an embedded
half-space in Mt.

We are now in a position to apply Theorem 6.1 to see that

d(Σ0,Σ1) � C0e
−C1d,

where C0 = C area(Y )9k2e−K1 , with C the constant from Theorem 6.1 and C1 = 1/K3/2.

Remark. If the components of X are incompressible, then Nehari’s theorem [34] implies
that ‖Σt‖F � 3/2. In particular, the constants in the previous theorem will not depend on
‖Σ0‖F in this case.

Remark. As with our previous inflexibility theorems for quasiconformal deformations,
Theorem 6.3 also holds for certain hyperbolic 3-manifolds with rank-1 cusps. For example, if
(Mt ∪N (Φt(Y ))) \ (Mt)δc is a compact manifold, then the proof of Theorem 6.3 goes through
after making the exact same modifications that were described in the remark after the proof
of Theorem 5.8. Manifolds lying on the boundary of a Bers slice of a closed surface give one
important case where this condition holds.

7. Curves on surfaces and limits of surface groups

The application of inflexibility to uniformization of 3-manifolds fibering over the circle requires
us to develop some preliminary notions from algebraic and geometric convergence of Kleinian
groups. We emphasize that the techniques we develop treat only the case when S is closed,
though many results hold more generally. We assume that S is closed in what follows.

7.1. Hyperbolic surfaces

We begin by reviewing some standard facts about hyperbolic surfaces. A proof of the following
lemma of Bers can be found in [16].

Lemma 7.1. Given a closed surface S of genus g, there exist positive Lg and L′
g such that,

for any hyperbolic structure X on S, the following hold.
(i) For all points p in X there is an essential simple closed curve of length at most Lg that

contains p.
(ii) Any simple closed curve on X of length at most Lg can be extended to pants

decomposition of total length at most L′
g.

We employ the thick–thin decomposition for hyperbolic surfaces as well as hyperbolic 3-
manifolds from Lemma 3.8. For surfaces, the thick part satisfies a bounded diameter condition
as an application of Gauss–Bonnet.

Lemma 7.2. Each component of X�ε has diameter bounded by a constant D depending
only on ε and S.



20 JEFFREY BROCK AND KENNETH BROMBERG

A surface X is ε-thick if X�ε = X.

7.2. The complex of curves

Given a closed surface S of negative Euler characteristic, let S denote the collection of isotopy
classes of simple closed curves on S. The complex of curves C(S) is a simplicial complex of
dimension 3g − 2 whose vertices correspond to elements of S, and whose k-simplices span
collections of (k + 1) vertices whose corresponding elements of S can be realized disjointly on
S. Giving each simplex the standard metric, we obtain a distance function

dC : S × S −→ N.

A standard projection map from Teich(S) to C(S) is readily defined by applying the following
lemma, which is a simple application of the collar lemma [16, Theorem 4.4.6; 27, Lemma 2.1].

Lemma 7.3. Given L > 0, there exists C > 0 such that if α and β are simple closed curves
on X of length at most L, then we have dC(α, β) � C.

The coarse projection map

πC : Teich(S) −→ P (C0(S))

of Teich(S) to the set P (C0(S)) of subsets of vertices of C(S) assigns to each X ∈ Teich(S) the
collection of vertices of C(S) whose corresponding curves can be realized on X with length less
than Lg. By Lemma 7.1, the image πC(X) is nonempty and, by Lemma 7.3, it has uniformly
bounded diameter, so we have a coarse notion of separation between bounded length curves
on X and Y obtained by taking

dC(X,Y ) = diamC(S)(πC(X), πC(Y )).

7.3. Thurston’s compactification

The elements of S naturally determine points in Thurston’s compactification for Teich(S),
the projective measured lamination space PML(S). Thurston showed that Teichmüller space
can be compactified by the (6g − 7)-sphere PML(S) to obtain a closed ball. The action of the
mapping class group Mod(S) on Teich(S) extends to the compactification by homeomorphisms.
Each simple closed curve α determines a point in PML(S). For further details on Thurston’s
construction, we point the reader to [24, 26] or [8].

7.4. Pseudo-Anosov mapping classes

Those elements ψ ∈ Mod(S) with positive translation distance realized at a point on the interior
of Teich(S) are known as pseudo-Anosov mapping classes. Their action on C(S) is characterized
by a freeness condition: for each γ ∈ C0(S), we have γ �= ψn(γ) for any nonzero n. Thurston
showed that these elements have north–south dynamics on the compactified Teichmüller space:
there is a unique stable lamination [μ+] and unstable lamination [μ−] in PML(S) fixed by
the action of ψ, and for each neighborhood U of [μ+] and each [γ] ∈ PML(S) with [γ] �= [μ−],
there is an n0 for which ψn([γ]) lies in U for all n > n0, and similarly for [μ−].

7.5. Surface groups

We discuss two related notions of convergence for hyperbolic 3-manifolds with the homotopy
type of a surface S. A sequence {ρi} of discrete, faithful representations

ρi : π1(S) −→ PSL2(C)
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converges to a limit ρ∞ if ρi(γ) → ρ∞(γ) in PSL2(C) for every γ ∈ π1(S). The quotient topology
determined by passing to conjugacy classes is the algebraic topology, and the set of all conjugacy
classes of discrete, faithful representations of π1(S) to PSL2(C) with this topology is denoted
by AH(S).

On the level of quotient hyperbolic 3-manifolds one obtains a similar formulation of
convergence via the notion of a marking of a hyperbolic 3-manifold by a homotopy equivalence
with S. Precisely, for each i let Mi be a complete hyperbolic 3-manifold and

fi : S −→Mi

be a homotopy equivalence. Then the marked manifolds {(fi,Mi)} converge to the marked
manifold (f∞,M∞) if there are lifts f̃i : S̃ → M̃i = H

3 such that f̃i converges to f̃∞ uniformly
on compact sets. Giving such pairs the equivalence relation

(f,M) ∼ (g,N)

if there is an isometry φ : M → N so that φ ◦ f � g, the quotient topology yields the
algebraic topology on the set {[(f,M)]} of equivalence classes of marked hyperbolic 3-manifolds
homotopy equivalent to S. The topology is equivalent to that given above for representations via
the natural bijective holonomy relation between conjugacy classes of discrete faithful PSL2(C)
representations ρ of π1(S) and equivalence classes [(f,M)]. We also use AH(S) to refer to
the collection of equivalence classes of such marked hyperbolic 3-manifolds with the algebraic
topology. When the meaning is clear from the context, we also refer to a hyperbolic 3-manifold
M in AH(S) assuming an implicit marking by a homotopy equivalence f : S →M .

As in the setting of Teich(S), the mapping class group Mod(S) acts on AH(S) via re-marking

ϕ(f,M) �−→ (f ◦ ϕ−1,M).

As a result, we have the diagonal action ϕ(Q(X,Y )) = Q(ϕ(X), ϕ(Y )) of the mapping class
ϕ ∈ Mod(S) on quasi-Fuchsian space.

7.6. Geometric convergence

Let (Mn, pn) be a sequence of hyperbolic 3-manifolds with basepoint. We say that (Mn, pn)
converges geometrically to a based hyperbolic 3-manifold (M∞, p∞) if, for every compact subset
K of M∞ containing p∞ and every L > 1, there exist L-bi-Lipschitz embeddings

φn : (K, p∞) −→ (Mn, pn)

for n sufficiently large. The maps φn are the approximating maps. We note that this form of
geometric convergence is often called bi-Lipschitz convergence.

The following lemma relates geometric convergence to algebraic convergence.

Lemma 7.4. Let (Mn, pn) converge to (MG, pG) geometrically. Let f : S →MG be a map
whose image is contained in an open set K whose closure is compact and assume pG ∈ K.
Let φn : (K, pG) → (Mn, pn) be approximating maps with bi-Lipschitz constant limiting to 1,
and assume that φn ◦ f : S →Mn are homotopy equivalences. Then (φn ◦ f,Mn) converges to
(f∞,M∞), where M∞ is the cover of MG induced by the subgroup f∗(π1(S)) and f∞ is the
lift of f .

Proof. We lift the φn to maps φ̃n : (K̃, p̃G) → (H3, p̃n). Note that K̃ is a subset of H
3, and

we can assume that p̃G = p̃n and that the derivative Dφ̃n converges to the identity on the
tangent space at p̃G. By the Arzela–Ascoli theorem, this sequence will be pre-compact in the
compact open topology and since the bi-Lipschitz constant limits to 1, every limit will be an
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isometry with derivative the identity on the tangent space at p̃G. Therefore φ̃n converges to
the identity map and the lemma follows.

We would like to compare an algebraic convergence to geometric convergence. We say that an
algebraically convergent sequence [(fn,Mn)] → [(f∞,M∞)] converges strongly if the following
holds. Let (fn,Mn) be representatives such that (fn,Mn) converges to (f∞,M∞) and let
pn = fn(p), where p is a point in S. Let (MG, pG) be the geometric limit of (Mn, pn). Then
[(fn,Mn)] converges to [(f∞,M∞)] strongly if (MG, pG) = (M∞, p∞).

Note that if (fn,Mn) converges to (M∞, p∞) and the convergence is strong, then the
approximating maps φn can be chosen such that if K is a compact set with f∞(S) ⊂ K, then
fn is homotopic to φn ◦ f∞.

We use the following fundamental result of Thurston and an improvement by Evans.

Theorem 7.5 (Thurston, Evans). Let [ρn] → [ρ] be a convergent sequence in AH(S) and
assume that, for all α ∈ π1(S), if ρ(α) is parabolic, then ρn(α) is parabolic for all n. Then the
convergence is strong.

Remark. The case when ρn is assumed quasi-Fuchsian was established by Thurston (see
[39]), and generalized by Evans (see [23]) to the setting of general manifolds in AH(S). We
use exclusively the case when ρ has no parabolic elements in its image; the proof in this setting
is considerably easier.

7.7. Lipschitz maps

Let g : X →M be a 1-Lipschitz homotopy equivalence of a hyperbolic surface X into a
hyperbolic 3-manifold M . If α is a homotopy class of simple closed curves on X, then the
length of the geodesic representative of α on X bounds from above the length of its geodesic
representative in M . As a result, geometric features of hyperbolic surfaces can be used to
control the geometry of 3-manifolds (cf. [12, 31, 32, 40]).

Two standard constructions of such maps are Thurston’s pleated surfaces and the related
simplicial hyperbolic surfaces, also introduced in [39] and used extensively by Bonahon [7] and
Canary [18]. Though we shall employ both constructions, we need only their consequences
rather than the constructions themselves.

Theorem 7.6 (Canary). Let S be a closed surface and let M ∈ AH(S). Let x and y be
points in the convex core of M . We then have a homotopy gt : Xt →M with the following
properties.

(i) The family Xt is a continuously varying family of hyperbolic metrics on S.
(ii) The maps gt are 1-Lipschitz.
(iii) The point x lies in g0(X0) and y lies in g1(X1).

In particular, for any point x in the convex core of M, there is a 1-Lipschitz map of a hyperbolic
surface into M whose image contains x.

The previous result can be proved using simplicial hyperbolic surfaces. For the following,
one needs pleated surfaces directly. We use this result only in Corollary 7.15.
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Proposition 7.7. Let α∗ be a closed geodesic in M ∈ AH(S) that is homotopic to a
simple closed curve α on S. Then there is a 1-Lipschitz map X →M of a hyperbolic surface
X that restricts to an isometry from the geodesic representative of α on X to α∗.

In this case we say that X realizes α.
The following lemma recapitulates a standard fact for pleated surfaces (see [40]) in the

setting of Lipschitz homotopy equivalences of hyperbolic surfaces and 3-manifolds. It will be
useful to know this for arbitrary Lipschitz constants.

Lemma 7.8. Given ε > 0 and B � 1, there exists ε′ > 0 such that if f : X →M is a B-
Lipschitz homotopy equivalence of a hyperbolic surface into a hyperbolic 3-manifold M and p
is a point with f(p) ∈M<ε′ , then we have p ∈ X<ε.

Proof. By Lemma 7.2, the diameter of each component of X�ε is bounded by a constant D
that only depends on S and ε. Therefore the f -image of each component of X�ε has diameter
less than BD. By a theorem of Brooks and Matelski (see [15]), we may choose ε′ < ε3 small
enough such that the distance between the boundaries of the ε3-thin and the ε′-thin part is at
least BD. Every component of X�ε has non-abelian fundamental group while every component
of M<ε3 has abelian fundamental group. Since f is π1-injective, the f -image of each component
of X�ε must intersect M�ε3 and is therefore disjoint from M<ε′ .

Mumford’s compactness theorem (see [33]) guarantees that any sequence of ε-thick surfaces
in Teich(S) can be re-marked to converge in Teich(S) up to subsequence; the following shows
the same is true for Mn ∈ AH(S) with uniformly Lipschitz markings by thick surfaces.

Proposition 7.9. Let ε > 0 be given.

(i) For each sequence {Xn} of ε-thick surfaces there are markings fn : S → Xn such that
(fn,Xn) converges in Teich(S).

(ii) Let (fn,Xn) be a convergent sequence in Teich(S) and gn : Xn →Mn be B-Lipschitz
homotopy equivalences to hyperbolic 3-manifolds Mn. Then {(gn ◦ fn,Mn)} has a convergent
subsequence in AH(S).

Proof. Statement (i) is a restatement of Mumford’s compactness theorem for the Moduli
space M(S) (see [33]). To see statement (ii), note that since the sequence (fn,Xn) converges,
we can place a hyperbolic metric on S such that the marking maps fn are B′-Lipschitz for
some B′ > 1. Then the maps hn = gn ◦ fn are BB′-Lipschitz.

Pick a point p ∈ S and let p̃ ∈ S̃ = H
2 be a point in the pre-image of p. Identifying each M̃n

with H
3, we choose lifts of hn such that h̃n(p) = 0 ∈ H

3. Since the maps hn are BB′-Lipschitz,
it follows that, for any q ∈ S̃, the set {h̃n(q)} has compact closure in H

3. By the Arzela–Ascoli
theorem, there exists a subsequence such that h̃n converges uniformly on compact sets to a map
h̃∞ : S̃ → H

3. The action of π1(S) on S̃ commutes with the action of a representation of π1(S)
in PSL2(C) so that h̃∞ descends to a pair (h∞,M∞), where M∞ is the quotient 3-manifold.

7.8. Margulis estimates

Let M be a hyperbolic manifold in AH(S) and K be a subset of M . The Margulis lemma
provides bounds for the number of homotopy classes of essential primitive loops of length less
than L that intersect K such that each loop is a homotopic to a simple closed curve on S.
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Lemma 7.10. Given L > 0 and D > 0, there is a N > 0 such that the following holds. Let
M ∈ AH(S) and let K ⊂M be a subset of diameter at most D. Then the number of distinct
essential homotopy classes of loops of length at most L intersecting K is bounded above by N .

Proof. By [15] there exists ε > 0 such that the distance between ∂M<ε and ∂M�ε3 is at
least D + L, where ε is less than the 3-dimensional Margulis constant ε3.

The proof then breaks into two cases. First assume that K intersects M<ε. Then every loop
of length at most L that intersects K will be contained in a component of M<ε3 . Since M
lies in AH(S), M has no rank-2 cusps and every component of M<ε3 contains one essential
primitive loop.

Now we assume that there is a point x in K ∩M�ε. Any loop of length at most L that
intersects K will be homotopic to a loop of length at most L+ 2D that intersects x. The
number of distinct homotopy classes of loops of length at most L+ 2D that intersect x is
bounded by the quotient

V =
vol(BH3(0, L+ 2D + ε))

vol(BH3(0, ε))

of the volumes of balls of radius L+ 2D + ε and ε about the origin in the hyperbolic space H
3,

so taking N = V + 1 proves the lemma.

7.9. Geometric limit arguments

A subset K ⊂M is ε-thick if K ⊂M�ε.

Proposition 7.11. Let (Mn, ωn) be hyperbolic 3-manifolds homotopy equivalent to S that
converge geometrically to (M∞, ω∞). Assume that there exist ε > 0 and Rn → ∞ such that the
Rn-neighborhood of ωn in Mn is ε-thick. Then M∞ is homotopy equivalent to S, and there are
homotopy equivalences fn : S →Mn and f∞ : S →M∞ so that (fn,Mn) converges strongly to
(f∞,M∞).

Proof. By Theorem 7.6 there exist a hyperbolic surface Xn and a 1-Lipschitz map gn :
Xn →Mn whose image contains ωn. Let qn be a point in Xn with gn(qn) = ωn. Since gn is
1-Lipschitz, an Rn-neighborhood of qn in Xn will be ε-thick as well. There is a constant K
depending only on ε and the genus of S such that if a hyperbolic structure X on S has ε-thick
neighborhood of radius at least K, then X itself is ε-thick. In particular for large n the surfaces
Xn are themselves ε-thick.

We now apply Proposition 7.9 to find homeomorphisms fn : S → Xn such that {(fn,Xn)}
converges in Teichmüller space and {(gn ◦ fn,Mn)} converges in AH(S). To show that the
sequence converges strongly, it suffices to verify that it is type-preserving by an application
of Theorem 7.5. After an isotopy, we can assume that there is a fixed point x ∈ S such that
fn(x) = qn. Let α be a nontrivial loop in S based at x. Since {(fn,Xn)} converges, we can
homotope the fn rel x so that the loops fn(α) have length bounded above by a constant only
depending on the homotopy class of α rel x. Since each gn is 1-Lipschitz, the lengths of the
loops gn ◦ fn(α) are also uniformly bounded. If the sequence is not type-preserving, then there
will be some α such that the length of the geodesic representative of gn ◦ fn(α) tends to zero.
In particular, for large n the curve gn ◦ fn(α) will be homotopic into a component of the ε-
thin part of Mn. There is then a bound on the distance from gn ◦ fn(α) to this component of
the thin part where the bound only depends on the length of gn ◦ fn(α). But for large n the
Rn-neighborhood NRn(ωn) of ωn has nonempty intersection with this component of the ε-thin
part, contradicting our assumption that NRn(ωn) lies in M�ε

n .
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If follows that the sequence (gn ◦ fn,Mn) is type-preserving, and by Theorem 7.5 the
convergence is strong. The proposition then follows.

Proposition 7.12. Given positive constants L and ε, there exist R and C so that the
following holds. Let M ∈ AH(S), and α and β be curves in C(S). Let α∗ and β∗ be loops based
at ω in the convex core of M in the homotopy class of α and β, respectively, and assume that

M (α∗) � L, 
M (β∗) � L and the neighborhood NR(ω) of radius R about ω has injectivity
radius bounded below by ε. Then we have

dC(α, β) � C.

Proof. We argue by contradiction. Assume that there is a sequence (Mn, ωn) of hyperbolic
manifolds with baseframes such that NRn(ωn) is ε-thick, Rn → ∞, and that αn and βn are
homotopy classes in C(S) represented by closed loops α∗

n and β∗
n in Mn based at ωn of length

at most L for which dC(αn, βn) → ∞.
After passing to a subsequence, (Mn, ωn) converges geometrically to a manifold (M∞, ω∞).

By Proposition 7.11, (M∞, ω∞) is homotopy equivalent to S, and the approximating maps
are homotopy equivalences for large n. Choosing a compact core K of M∞ that contains a
diameter 4L neighborhood of ω∞, there are 2-bi-Lipschitz approximating maps φn : K →Mn

for large n such that φn are homotopy equivalences.
The image of K under φn will contain α∗

n and β∗
n, so φ−1

n (α∗
n) and φ−1

n (β∗
n) are loops in M∞

of length at most 2L. Since K is compact, there are only finitely many free homotopy classes
of loops in K of length at most 2L. This finite set of loops has finite diameter in C(S). Since
φn is a homotopy equivalence, we conclude that dC(αn, βn) is uniformly bounded, contrary to
our assumption.

Given (f,M) ∈ AH(S), and ε > 0, we let shortε(M) denote the set of isotopy classes
α ∈ C(S) so that, 
M (α) < 2ε. It is due to Thurston, and a consequence of Lemma 7.8 and
Theorem 7.6, that there is an εs > 0 so that, for ε < εs, a closed geodesic in M of length less
than ε lies in the homotopy class of a simple closed curve on S. Then, for ε < εs and for each
α ∈ shortε(M), there is a component Tε(α) of the ε-thin part of M . We record the following
immediate consequence.

Lemma 7.13. Given (f,M) ∈ AH(S) and positive ε < εs, if M has no cusps and
shortε(M) = ∅, then M is ε-thick.

Proposition 7.14. Given positive ε < εs, and R > 0, there exists L > 0 so that the
following holds. Let f : X →M be a 1-Lipschitz homotopy equivalence of a hyperbolic surface
X into a hyperbolic 3-manifold M, such that X is ε-thick. If each γ ∈ shortε(M) satisfies

X(γ) > L, then the R-neighborhood NR(f(X)) is ε-thick.

Proof. Again we argue by contradiction and assume that we have a sequence {gn : Xn →
Mn} of 1-Lipschitz homotopy equivalences from ε-thick surfaces Xn with the property that the
infimum of 
Xn(γ) over all γ ∈ shortε(Mn) is at least Ln → ∞, but the R-ball about gn(Xn)
is not ε-thick for any n.

By Proposition 7.9, there are markings fn : S → Xn so that after passing to a subsequence,
{(fn,Xn)} converges in Teich(S) and {(gn ◦ fn,Mn)} converges in AH(S) to an algebraic limit
(g∞ ◦ f∞,M∞) with the property that shortε(M∞) = ∅. Otherwise, there is a γ in shortε(Mn)
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for sufficiently large n, so we have

Xn(γ) −→ ∞.

On the other hand, convergence of {(fn,Xn)} in Teich(S) implies that 
Xn(γ) converges, which
is a contradiction.

By Theorem 7.5, the sequence {(gn ◦ fn,Mn)} converges strongly to (g∞ ◦ f∞,M∞) with
shortε(M∞) = ∅; in particular, by Lemma 7.13, M∞ is ε-thick. By geometric convergence,
the R-neighborhood about gn(Xn) is ε-thick for n sufficiently large, which is a contradiction,
completing the proof.

Corollary 7.15. Given positive R, L and ε < ε3, there are C and D so that the following
holds: let α∗ be a loop in a manifold M ∈ AH(S) in the homotopy class of α ∈ C(S). Assume
that length of α∗ is at most L and that the R-neighborhood of α∗ is not ε-thick. Then there is
a curve β ∈ shortε(M) satisfying

dC(α, β) < C

with the property that dM (T(α),T(β)) � D.

Proof. If α∗ is not a geodesic, then it is either uniformly close to its geodesic representative
or α is in shortε(M). In the latter case, we may take β = α and we are done. Thus we
can assume that α∗ is a geodesic and consider the 1-Lipschitz hyperbolic surface f : X →M
realizing α∗.

If the surface X fails to be ε-thick itself, then the theorem follows trivially from Lemmas 7.1
and 7.8. Thus we may assume that X is ε-thick.

Applying Proposition 7.14, given R, there is an L′ so that if the R-ball about X fails to be
ε-thick, then there is a curve β ∈ C(S) so that 
X(β) < L′. Since α has length at most L on X,
by Lemma 7.1 there is a C depending on max{L,L′} with the property that

dC(α, β) < C.

Since X is itself ε-thick, there is a uniform bound depending only on ε and the genus of X
for the diameter of X. Hence there is a uniform bound on the distance between the geodesic
representatives of α and β on X. For any loop γ in M of length at most max{L,L′}, there is
a bound, depending only on max{L,L′}, on dM (γ,T(γ)). Combining the two bounds gives the
result.

We can now prove the main theorem of this section, providing a linear lower bound on the
distance between two bounded length curves in a hyperbolic manifold in terms of the distance
of the curves in the curve complex. By the Margulis lemma, a short curve will have a large
tubular neighborhood and therefore lie at large distance from the geodesic representatives of
every other bounded length curve. In this case we will prove a stronger statement and bound
the distance between the Margulis tubes. For this reason, we define T

′
ε(γ) = Tε(γ) if 
M (γ) < ε,

and let T
′
ε(γ) be the geodesic representative of γ in M if 
M (γ) � ε.

Theorem 7.16. Given L > 0, there exist K1 and K2, all positive so that, for α and β in
C0(S), and M ∈ AH(S), the following holds: if 
M (α) < L and 
M (β) < L, then

dM (T′
ε3(α),T′

ε3(β)) � K1dC(α, β) −K2.

Remark. We point out that Theorem 7.16 uses in an essential way the fact that S is
a closed surface. If S has a boundary, the same statement holds if we measure distance in
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the pared manifold M0 obtained by excising cusps associated to ∂S. All the results of the
paper would then generalize in the presence of the appropriate generalization of the geometric
inflexibility theorem (Theorem 5.6) to this pared setting.

Before we begin the proof of Theorem 7.16, we make a definition and prove a preliminary
lemma. A D-coarse path in C(S) is a sequence of αi in C0(S) such that dC(αi, αi+1) � D.

Lemma 7.17. Given L > 0, there exist D > 0 and R > 0 such that the following holds.
Let α and β in C(S) and M ∈ AH(S) satisfy 
M (α) � L and 
M (β) � L respectively. Let Γ
be a path in M from T

′
ε3(α) to T

′
ε3(β). Then there are closed curves αi with 
M (αi) � Lg and

dM (αi,Γ) < R such that the curves αi describe a D-coarse path in C(S) from α to β.

Proof. Let x be the endpoint of Γ on T
′
ε3(α) and y be the endpoint of Γ on T

′
ε3(β). Let

gt : Zt →M , t ∈ [0, 1], be a continuous family of 1-Lipschitz maps of hyperbolic surfaces Zt
such that x ∈ g0(Z0) and y ∈ g1(Z1). Such an interpolation exists by Theorem 7.6.

There is a subinterval [a, b] ⊆ [0, 1] such that x ∈ ga(Za), y ∈ gb(Zb) and gt(Zt) ∩ Γ �= ∅ for
all t ∈ [a, b]. Reparameterize [a, b] to be the interval [0, 1] and replace the original homotopy
with this reparameterized homotopy.

Given a simple closed curve γ on S, let U(γ) ⊆ [0, 1] be the set of t such that there is a
simple closed curve γ′ on Zt, homotopic to γ, with γ′ ∩ g−1

t (Γ) �= ∅ and 
gt(γ
′) < Lg. By (ii)

of Lemma 7.1, if U(γ) ∩ U(γ′) �= ∅, then

dC(γ, γ′) � C. (7.1)

Let z be a point in g−1
t (Γ). By Lemma 7.1, for each t, there exists γ ∈ C(S) such that

t ∈ U(γ). The open (possibly disconnected) subsets U(γ) cover [0, 1], so we can find a collection
α0, . . . , αn of distinct homotopy classes of simple closed curves in C(S) such that the U(αi)
satisfy

U(αi) ∩ U(αi+1) �= ∅ (7.2)

with 0 ∈ U(α0) and 1 ∈ U(αn). In particular the αi are a C-coarse path. To finish the proof,
we need to show that α and β are uniformly close to α0 and αn, respectively.

To see this we observe that if 
M (α) is sufficiently small, then Lemma 7.8 guarantees that if
0 ∈ U(γ), then we have γ = α. On the other hand if α has a sufficiently large thick neighborhood
then, since 
M (α) � L, Proposition 7.12 implies that if 0 ∈ U(γ), then α and γ are uniformly
close in C(S). If neither of these cases holds, an application of Corollary 7.15 allows us to
replace α with a curve α′ that is sufficiently short so that α and α′ are uniformly close in M
and their corresponding vertices are uniformly close in C(S). We then append to Γ a geodesic
segment of length at most R connecting x to T

′
ε3(α

′) to make a new path Γ′ and apply the
previous argument to Γ′. This process yields a coarse path {αi} with α0 = α′ such that the αi
have representatives in M of length at most Lg and so that each αi intersects Γ′.

Applying the same analysis to β we obtain the desired coarse path.

Remark. By the Bers inequality (see [5, Theorem 3; 28, Proposition 6.4]), given the
quasi-Fuchsian manifold Q(X,Y ), we have 
Q(X,Y )(γ) � 2
X(γ). Therefore there is a uniform
D, depending only on S, such that there is a D-coarse path from X to Y in C(S) whose lengths
in Q(X,Y ) are at most Lg.

Proof of Theorem 7.16. Let Γ be the shortest geodesic from T
′
ε3(α) to T

′
ε3(β) so that

dM (T′
ε3(α),T′

ε3(β)) = 
(Γ). Applying Lemma 7.17, with L as in the statement, we obtain a
D > 0, an R > 0 and a D-coarse path {αi}ni=0 ⊂ C0(S) with α0 = α and αn = β, with each αi
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satisfying 
M (αi) < Lg, for 0 < i < n, and with each having distance at most R from Γ. Since
this path {αi} is D-coarse, we have n � dC(α, β)/D.

Since αi has length at most Lg for 0 < i < n and lies at distance at most R from Γ, each
determines a curve of length at most 2R+ Lg that intersects Γ in the same homotopy class. The
number of homotopically distinct primitive closed loops of length at most Lg + 2R intersecting
Γ, such that each is homotopic to an essential simple curve on S, is at least n, where D(n+ 1) �
dC(α, β).

The path Γ can be divided into �
(Γ)� disjoint segments of length 1 and one segment of
length at most 1. Let N be the constant given by Lemma 7.10 for the length bound Lg + 2R
and the diameter bound 1. Then each of the �
(Γ)� + 1 = �
(Γ)� segments intersects at most
N distinct homotopy classes of closed curves of length at most Lg + 2R and therefore

N(
(Γ) + 1) � N�
(Γ)� � n.

Combining this inequality with a lower bound on n, we have

N(
(Γ) + 1) � dC(α, β)
D

− 1,

as desired.

Remark. Note that if α is a closed curve in M of length at most L, then the distance
between α and T

′
ε3(α) is uniformly bounded by a constant only depending on L. In particular,

Theorem 7.16 holds if we replace T
′
ε3(α) with any curve of length at most L that is homotopic

to α.

Corollary 7.18. Given a closed surface S, there is a linear function f such that the
distance between the boundary components of the convex core C(Q(X,Y )) of a quasi-Fuchsian
manifold Q(X,Y ) in QF(S) is bounded below by f(dC(X,Y )).

Proof. Let α ∈ C(S) have length onX of at most the Bers constant Lg, and choose β ∈ C(S)
similarly for Y . Let α∗ and β∗ be the geodesic representatives of α and β, respectively, in
Q(X,Y ). By the Bers inequality, α∗ and β∗ have length at most 2Lg. Every closed geodesic
is contained in the convex core C(Q(X,Y )), so there are hyperbolic surfaces Zα and Zβ and
1-Lipschitz homotopy equivalences fα : Zα → Q(X,Y ) and fβ : Zβ → Q(X,Y ) realizing α∗ and
β∗, respectively. These maps will have image in the convex core, and each separates the two
components ∂C(Q(X,Y )).

Let Γ be the shortest geodesic connecting the two components of the convex core boundary.
Let x be a point of intersection of Γ with the image of Zα and y be a point of intersection of Γ
with the image of Zβ . There is a curve α0 ∈ C(S) such that α0 has a representative on Zα of
length at most Lg and whose image α∗

0 intersects x. Note that α∗
0 will have length at most Lg

constant and, by (ii) of Lemma 7.1, there is a constant D such that dC(S)(α, α0) � D. Similarly,
we can find a curve β0 ∈ C(S) that is represented by a loop β∗

0 that intersects y ∈ Q(X,Y ), of
length at most the Bers constant and with dC(β, β0) � D.

We want to find a lower bound for 
(Γ). We observe that

dQ(X,Y )(α∗
0, β

∗
0) � 
(Γ) + Lg

and that

dC(S)(X,Y ) = dC(S)(α, β) � dC(S)(α0, β0) + 2D.

The result then follows from Theorem 7.16.
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The following corollary controls the depth of a given curve in the convex core. We leave the
proof, which follows the same lines as the above, to the reader.

Corollary 7.19. Given a closed surface S and L > 0, there is a linear function fL
such that if γ ∈ C(S) and the length of γ is at most L, then the distance from the geodesic
representative of γ in Q(X,Y ) to the boundary of the convex core is at least

fL(min{dC(X,T′
ε3(γ)), dC(Y,T′

ε3(γ))}).

8. Pseudo-Anosov double limits

In this section, we employ the estimates on depth in the convex core from the previous
section together with the inflexibility theorems of previous sections to establish the convergence
of pseudo-Anosov double iteration on the quasi-Fuchsian space of a closed surface. The
hyperbolization theorem for 3-manifolds that fiber over the circle follows as a consequence.

The following theorem is a refined version of a theorem of Masur and Minsky (see [27,
Proposition 3.6]). The proof that follows was communicated to us by Bestvina who attributes
the argument to Luo. (See [6, Proposition 11].)

Theorem 8.1. Let ψ ∈ Mod(S) be pseudo-Anosov, with [μ+] and [μ−] the attracting and
repelling laminations in PML(S) respectively. Then there is a Kψ depending only on ψ so
that, for any B,D > 0, the following hold.

(i) There exist neighborhoods V and U of [μ+] and [μ−] in PML(S) so that, for any α ∈ V
and β ∈ U , we have

dC(α,ψn(β)) � Kψn+B.

(ii) There exists a subset W in PML(S) \ (U ∪ V ) such that any path in C(S) from a curve
in U to a curve in V contains a subpath of length at least D.

(iii) For each α ∈ U, β ∈ V and γ ∈W we have

dC(γ, ψ−n(α)) � Kψn+B and dC(γ, ψn(β)) � Kψn+B.

(iv) Furthermore, given any curve β, the sets U, V and W may be taken so that any one
of them contains β.

Proof. Let V ′ and U ′ be neighborhoods of [μ+] and [μ−] in PML(S), respectively, such
that, for simple closed curves α ∈ V ′ and β′ ∈ U ′, the intersection of α and β is nonempty.
Then V ′ and U ′ are necessarily disjoint, and we let

W ′ = PML(S) \ (V ′ ∪ U ′)

be their complement in PML(S). Then the north–south dynamics of ψ guarantees that, for
any compact subset K of PML(S) that does not contain [μ+], we have that ψi(U ′) contains
K for some positive i. In particular, since W ′ ∪ V ′ is compact, there is an N so that we have
ψN (W ′ ∪ V ′) ⊂ V ′.

We claim that, for any curves α ∈ ψmN (V ′) and β ∈ U ′, we have

dC(α, β) � m+ 1. (8.1)

We first note that if α ∈ ψi(V ′) and β ∈ ψi(U ′), then any geodesic in the curve complex
connecting them will contain a curve in ψi(W ′), the complement of the two sets, and the
distance between α and β will be greater than 2. We also note that ψ(m+1)N (W ′) ⊂ ψmN (V ′).
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We prove the inequality by induction. By the observation above, the inequality (8.1) is true
when m = 1. To complete the induction, note that we have ψi(U ′) ⊂ ψi+N (U ′). Therefore U ′

lies in ψ(m+1)N (U ′) and β is in ψ(m+1)N (U ′). Any curve complex geodesic connecting β to α
will therefore contain a curve γ in ψ(m+1)N (W ′). Since ψ(m+1)N (W ′) is contained in ψmN (V ′),
the curve γ is contained in ψmN (V ′), and we have dC(β, γ) � m+ 1 by induction. But since γ
lies on a geodesic joining α to β, we have

dC(α, β) = dC(α, γ) + dC(γ, β)
� m+ 2,

completing the induction.
Let V0 =

⋃N−1
i=0 ψi(V ′). There is an M > 0 such that ψMN (V0) ⊂ V ′. Let n be an integer

greater than M and assume that k is a nonnegative integer less than N . We then observe that

ψnN+k(V ′) ⊂ ψnN (V0) ⊂ ψn−M (V ′)

and therefore

dC(α, β) � n−M + 1

for any α ∈ ψnN+k(V ′) and β ∈ U ′. Alternatively if α ∈ ψn(V ′) and β ∈ U ′, then

dC(α, β) �
⌊ n
N

⌋
−M + 1 � n

N
−M.

We now set V ′′ = ψ(B+M)N (V ′). Any α ∈ V ′′ has image ψn(α) lying in ψ(B+M)N+n(V ′), so
we have

dC(ψn(α), β) � (B +M)N + n

N
−M =

n

N
+B

and U ′ and V ′′ satisfy (i).
We may assume that B > D and let W = PML(S) \ (U ′ ∪ V ′′) so that any path from U ′ to

V ′′ contains a subpath of length at least D. Let N ′ = (B +M + 1)N , and let U = ψ−N ′
(U ′)

and V = ψN
′
(V ′′). Since U ⊂ U ′ and V ⊂ V ′′, (ii) will still hold U , V and W . We also note

that the sets U and ψ−2N ′
(V ) will satisfy (i), and W is contained in ψ−2N ′

(V ). A similar
statement holds for ψ2N ′

(U) and V with W contained in ψ2N ′
(V ). Therefore (iii) will hold.

For (iv) we note that we can replace U , V and W with ψn(U), ψn(V ) and ψn(W ),
respectively, for any integer n, respectively. We also note that⋃

n∈Z

ψn(V ) = PML(S) \ [μ+] and
⋃
n∈Z

ψn(U) = PML(S) \ [μ−]

and that ⋃
n∈Z

ψn(W ) = PML(S) \
(⋂
n∈Z

ψn(V ) ∪
⋂
n∈Z

ψn(U)

)
= PML(S) \ {[μ+], [μ−]}.

If we want a fixed curve β to be in U , we choose n large enough such that β is in ψn(U) and
then replace U with ψn(U), V with ψn(V ) and W with ψn(W ).

8.1. Convergence of iteration

Let S be a closed surface. Given Y ∈ Teich(S), the Bers slice

BY = {Q(X,Y ) : X ∈ Teich(S)} ⊂ AH(S)

parameterizes Teich(S) by quasi-Fuchsian manifolds. Since the Bers slice BY has compact
closure in AH(S) (see [5]), the sequence {Q(ψ−n(X), Y )}n will have a convergent subsequence.
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It was established in [30] via a geometric limit argument that the sequence converges. We give
a new proof as an example of our methods.

Theorem 8.2. Let ψ ∈ Mod(S) be a pseudo-Anosov mapping class. Then the iteration
{Q(ψn(X), Y )}n converges in AH(S).

Proof. Let Tn be the distance between the components of the boundary of convex cores of
Q(ψnX,Y ). Choose closed geodesics α on X and β on Y of length less than the Bers constant
Lg for S. Then, applying Theorem 8.1, there is a positive integer N , so that

dC(ψn+N (α), β) � Kn.

Since ψn+N (α) and β have lengths on ψn+N (X) and Y , respectively bounded by Lg, we have

dC(ψn+N (X), Y ) = dC(ψn+N (α), β) � Kn.

Applying Corollary 7.18, we have
Tn > K1n−K2.

The pseudo-Anosov mapping class ψ is uniformly quasiconformal as a mapping from ψn(X)
to ψn+1(X) (independent of n). Let dn be the distance between Q(ψnX,Y ) and Q(ψn+1X,Y )
in the Bers slice BY as in Theorem 6.3. Then there are constants C1 and C2 such that

dn � C1e
−C2Tn

� C1e
−C2(K1n−K2).

This implies that Q(ψn(X), Y ) is a Cauchy sequence and hence convergent.

8.2. Double limits

We now examine the pseudo-Anosov double iteration

Qn = Q(ψ−n(X), ψn(Y )).

Thurston’s double limit theorem [40] guarantees that the sequence has a convergent
subsequence. In [21] a proof of convergence is outlined that uses the Mostow rigidity theorem;
in [30], McMullen showed convergence explicitly.

Using the geometric inflexibility theorem proved here, we give a single unified proof of this
and other convergence results that is independent of Thurston’s double limit theorem.

Theorem 8.3 (Pseudo-Anosov Double Limits). Given X, Y in Teich(S) and a pseudo-
Anosov mapping class ψ ∈ Mod(S), the double iteration {Qn}n converges strongly in AH(S).

For each n there is a K-quasiconformal deformation from Qn to Qn+1 where K bounds
the Teichmüller distance from X to ψ−1(X) and from Y to ψ(Y ). Let φn : Qn → Qn+1 be
the map given by Theorem 5.6. We note that in the application of the inflexibility theorems,
the constants that arise in Theorems 5.6 and 5.8 depend on K but not on n.

We begin with a criterion to ensure that a curve γ has a convergent sequence of geodesic
lengths 
Qn(γ).

Proposition 8.4. Given L > 0, there exists B > 0 so that the following holds: if given
γ ∈ C0(S) there exists N ∈ N for which 
QN (γ) < L and, for all n, we have

min{dC(ψN+n(Y ), γ), dC(ψ−N−n(X), γ)} � Kψn+B,
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then there exists 
∞ > 0 so that 
Qn(γ) → 
∞. Furthermore, we have


QN+n(γ) � 2
QN (γ)

for all n > 0.

Proof. Let depthQ(γ) denote the distance of T
′
ε3(γ) from the boundary of the convex core

of Q. Let f2L be the function given by Corollary 7.19 so that any curve β for which 
Q(β) < 2L
satisfies

depthQ(β) � f2L(min{dC(X, γ), dC(γ, Y )}).
Let dn = depthQN+n

(γ). If 
QN+n(γ) < 2L, then we have

dn � f2L(Kn+B).

Since 
QN (γ) < L, we know by assumption that

d0 � f2L(B).

Note that f2L is an increasing function, so we can make f2L(B) as large as we like through our
choice of B.

Let

n = 
QN+n(γ).

If 
n < 2L, then, by Theorem 5.8, there are constants C ′
1 and C ′

2 so that∣∣∣∣log
(

n+1


n

)∣∣∣∣ � C ′
1e

−C′
2dn . (8.2)

Choose C1 and C2 such that

C1e
−C2n = C ′

1e
−C′

2f2L(Kψn+B)

(recall f2L is linear). Since C1 = C ′
1e

−C′
2f2L(B), we can choose B such that

n∑
j=0

C1e
−C2n � C1

1 − e−C2
� log 2

from which it follows that ∣∣∣∣log
(

n

0

)∣∣∣∣ < log 2 (8.3)

by a simple inductive argument. We conclude that 
n < 2L, and thus equation (8.2) holds
for all n. It follows that {
n} is a Cauchy sequence, and its convergence to 
∞ > 0 follows
from (8.3).

We note the following corollary, which will play a role in establishing strong convergence of
{Qn}.

Corollary 8.5. If Qn has a subsequence that converges algebraically, then, for each
γ ∈ C0(S), the sequence 
Qn(γ) converges to a positive number.

Proof. Algebraic convergence of the subsequence Qni implies that there is an L so that

Qni (γ) < L for each ni. Taking B as guaranteed by Proposition 8.4, we use Theorem 8.1 to
choose subsets U , V and W of PML(S) with γ ∈W such that

min{dC(ψn(β), γ), dC(ψ−n(α), γ)} � Kψn+B



INFLEXIBILITY AND 3-MANIFOLDS FIBERING OVER S1 33

for all α ∈ U and β ∈ V for all n � 0. We then choose N > 0 such that ψ−N (X) ⊂ U and
ψN (Y ) ⊂ V . We then have

min{dC(ψN+n(Y ), γ), dC(ψ−N−n(X), γ)} � Kψn+B,

and by Theorem 8.4 we have that 
Qn(γ) converges to a positive number.

We now use Theorems 8.1 and 8.4 to find a pants decomposition whose lengths in Qn
converge.

Proposition 8.6. There exists a pants decomposition P such that, for every γ ∈ P, the
sequence 
Qn(γ) converges to a positive number.

Proof. By Lemma 7.17 and the remark that follows it, there is aD-coarse path from ψ−n(X)
to ψn(Y ) consisting of curves in C0(S) whose lengths are at most Lg in Q(ψ−n(X), ψn(Y )).
Let B be the constant given by Proposition 8.4, where L = L′

g is the Bers constant for a pants
decomposition.

As in the proof of Corollary 8.5, we can find subsets U, V and W of PML(S) chosen with
respect to the constants B + 1 and D and a positive integer N such that

min{dC(ψN+n(Y ), γ), dC(ψ−N−n(X), γ)} � Kψn+B + 1

for all n � 0 and γ ∈W .
In our coarse path from ψ−N (X) to ψN (Y ) consisting of curves whose length is at most Lg

in QN there is a curve γ ∈W . Let f : Z → QN be a 1-Lipschitz surface realizing γ. We can
then extend γ to a pants decomposition P such that, for all γ′ ∈ P, we have

L′
g > 
Z(γ′) > 
QN (γ′).

Since dC(γ, γ′) � 1, we have

min{dC(ψN+n(Y ), γ′), dC(ψ−N−n(X), γ′)} � Kψn+B

for all n � 0. Then Theorem 8.4 implies that 
Qn(γ′) converges for all γ′ ∈ P.

In the following proposition we will show that we have exponential decay of the bi-Lipschitz
constant on the iterated image of sufficiently deep and thick subsets. The proof has the same
basic structure as the proof of Proposition 8.4.

Proposition 8.7. Given ε, R, L,C > 0, there exist B,C1, C2 > 0 such that the following
holds. Assume that K is a subset of QN , such that diam(K) < R, injp(K) > ε for each p ∈ K,
and γ ∈ C0(S) is represented by a closed curve in K of length at most L satisfying

min{dC(ψN+n(Y ), γ), dC(ψ−N−n(X), γ} � Kψn+B

for all n � 0. Then we have

log bilip(φN+n, p) � C1e
−C2n

for p in φN+n−1 ◦ . . . ◦ φN ◦ f(K) and

C1

1 − e−C2
< C.

Proof. As in the proof of Proposition 8.4, if K is a subset of C(Q), then we let depthQ(K)
be defined by the distance from K to ∂C(Q). Let Φn = φN+n ◦ . . . ◦ φN .
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Let ε0 = εe−C . By [15] there exists an ε1 such that a point within ε of a point with injectivity
radius at least ε0 will have injectivity radius at least ε1. Let C ′

1 and C ′
2 be the constants given

by Theorem 5.6 for the thickness constant ε1. Let f = fLeC be the linear function given by
Corollary 7.19. We then define d(n) = f(Kψn+B) −R− ε. Finally we choose C1 and C2 such
that

C1e
−C2n = C ′

1e
−C′

2d(n).

Note that C1 = C ′
1e

−C′
2d(0) and we can make d(0) as large as we like through our choice of B.

Therefore we can choose B such that
C1

1 − e−C2
< C.

With this setup it is now easy to complete the proof of the theorem via induction. Note that
if p ∈ K, then we have depthQN (Bε(p)) > d(0), where Bε(p) is the ball of radius ε centered at
p. By Theorem 5.6, for all q ∈ Bε(p), we have

log bilip(φN , q) < C1.

In particular, for every p ∈ K, we have

log bilip(φN , p) < C1

and every point in φN (K) has injectivity radius at least εe−C1 .
Let

cn =
n∑
i=0

C1e
−C2i

and note that

cn <
C1

1 − e−C2
< C.

Assume that the theorem holds for all i between 0 and n and that the injectivity radius of
every point in Φi(K) is greater than εe−ci > εe−C . Note that if p is in K, then

log bilip(Φn, p) < cn < C.

It follows that the length of Φn(γ) is less than 2LgeC and for every point p within ε of Φn(K)
we have depthQN+n

(p) > d(n). We also note that the injectivity radius at p will be greater
than ε1, so we can apply Theorem 5.6 to see that

log bilip(φN+n+1, p) < C1e
−C2(n+1)

and that at every point in φN+n+1 ◦ Φn(K) = Φn+1(K) the injectivity radius is at least ε−cn+1 .
This completes the proof of the induction hypothesis and the proposition.

Proposition 8.8. There exist a positive integer N, positive constants C1, C2 and a
1-Lipschitz homotopy equivalence f : Z → QN so that, for all points p in φN+n−1 ◦ . . . ◦ φN ◦
f(Z), we have

log bilip(φN+n, p) < C1e
−C2n.

Proof. By Proposition 8.6 there exists a pants decomposition P such that 
Qn(γ) converges
to a positive number for every γ ∈ P. In particular, there are constants L+ > L− > 0 such that
L+ > 
Qn(γ) > L− for all n and γ ∈ P. For each n let fn : Zn → Qn be a 1-Lipschitz homotopy
equivalence realizing P. By the collar lemma, there exists ε > 0 such that any hyperbolic surface
with a pants decomposition whose lengths are between L− and L+ is ε-thick. In particular, the
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surfaces Zn are ε-thick. We also note that there is an R > 0 such that an ε-thick surface has
diameter bounded above by R.

By Lemma 7.8 there exists an ε′ > 0 such that fn(Zn) is contained in the ε′-thick part of
Qn. Let B be the constant given by Proposition 8.7 for the constants ε′, R, L+ and C = 2.
(Note that the choice of 2 is completely arbitrary and could be any number greater than 1).
Using Theorem 8.1, we can find an integer N such that

min{dC(ψN+n(Y ), γ), dC(ψ−N−n(X), γ} � Kψn+B,

where γ is a curve in P. We then let f = fN and Z = ZN and the proposition follows from
Proposition 8.7.

We are now ready to prove the convergence of double iteration, Theorem 8.3.

Proof of Theorem 8.3. Let f : Z → QN be the 1-Lipschtiz surface given by Proposition 8.8.
Then the maps fn = φN+n−1 ◦ . . . ◦ φN ◦ f are C-Lipschitz where

C =
C1

1 − e−C2
.

By Proposition 7.9 the sequence {(fn, Qn)} has a convergent subsequence {(fni , Qni)} in
AH(S) = AH(Z). Let {(f∞, Q∞)} be the limit. Note that from the proof of Proposition 7.9
we can assume that there are lifts f̃ni that converge to f̃∞.

Since Corollary 8.5 guarantees that the limit has no parabolics, Theorem 7.5 implies that
the limit is strong. In particular, if we pick a point p in Z and let pn = fn(p), then the sequence
{(Qni , pni)} will converge geometrically to (Q∞, p∞) for some point p∞ ∈ Q∞. Furthermore,
if K is a compact set with f∞(S) ⊂ K and gni : (K, p∞) → (Qni , pni) are approximating maps,
then fni is homotopic to gni ◦ f∞.

We will show that the entire sequence {(Qn, pn)} converges geometrically to (Q∞, p∞). Let
γ ∈ C0(S) be a simple closed curve on S and represent it by a closed curve γ∞ in M∞ and
let L = 
M∞(γ∞). Let K be a compact set in M∞ and assume that both p∞ and γ∞ are
contained in K. To show geometric convergence, we need to show that, for any A > 0, there
exist eA-bi-Lipschitz embeddings

gn : (K, p∞) −→ (Qn, pn)

for n sufficiently large.
Let B,C1 and C2 be the constants given by Proposition 8.7 with respect to the constants

εe−A/2, ReA/2, LeA/2 and A/2. By Theorem 8.1 there exists an NA such that

min{dC(ψNA+n(Y ), γ), dC(ψ−NA−n(X), γ} � Kψn+B.

Let K′ be the closed ε-neighborhood of K. By the strong convergence of the subsequence for
ni sufficiently large there is a eA/2-bi-Lipschitz embedding

gni : (K′, p∞) −→ (Mni , pni).

Note that every point in gni(K) will have injectivity radius at least εe−A/2, the diameter
of gni(K) will be at most ReA/2 and the length of gni(γ∞) will be at most LeA/2. Since
we can always replace NA with a larger integer, we can assume NA = ni, where ni is part
of the convergent subsequence. We now apply Theorem 8.7 to gNA(K) which implies that
φNA+n−1 ◦ · · · ◦ φNA is eA/2-bi-Lipschitz on gNA(K). Therefore the composition

gNA+n = φNA+n−1 ◦ . . . ◦ φNA ◦ gNA
is eA-bi-Lipschitz. Furthermore, gn(p∞) = pn, so we have our desired bi-Lipschitz embeddings
and {(Qn, pn)} converges geometrically to (M∞, p∞).
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To see that the sequence also converges algebraically, assume that K contains f∞(S). We note
that fn+1 is homotopic to φn ◦ fn and more generally fn+k is homotopic to φn+k ◦ . . . ◦ φn ◦ fn.
On the subsequence {ni} we already know that gni ◦ f∞ is homotopic to fni . By the above fact,
the composition φNA+n−1 ◦ . . . ◦ φNA ◦ fNA is homotopic to fNA+n−1 and in turn homotopic to
gNA+n−1 ◦ f∞. If gn are approximating maps for K whose bi-Lipschitz constant limits to 1, then,
by Lemma 7.4, we have that (gn ◦ f∞, Qn) → (f∞,M∞). By the above remarks (gn ◦ f∞, Qn) ∈
[(fn, Qn)] and therefore [(fn, Qn)] converges to [(f∞,M∞)] algebraically.

We conclude with the proof of Theorem 1.3.

Theorem 1.3 (Mapping Torus Hyperbolic). Let ψ ∈ Mod(S) be pseudo-Anosov. Then the
mapping torus Tψ = S × [0, 1]/(x, 0) ∼ (ψ(x), 1) admits a complete hyperbolic structure.

Proof. We note that as Mod(S) acts diagonally on quasi-Fuchsian space by re-marking, the
manifolds Qn and ψ(Qn) are isometric. Because we have

d(ψ−n+1(X), ψ−n(X)) = d(ψ(X),X) and d(ψn+1(Y ), ψn(Y )) = d(ψ(Y ), Y ),

and

ψ(Qn) = Q(ψ−n+1(X), ψn+1(Y )),

there is a uniform K for which Qn admits a K-bi-Lipschitz self-diffeomorphism

Ψn : Qn −→ Qn

so that Ψn is in the homotopy class of ψ.
We now use inflexibility and the fact that (Qn, pn) converges geometrically to (Q∞, p∞) to

extract a limiting isometry

Ψ∞ : Q∞ −→ Q∞

in the homotopy class of ψ as a limit directly.
If K is a compact set in Q∞ containing p∞ with geometric limit mappings gn : (K, p∞) −→

(Qn, pn), then (gn)−1 ◦ Ψn ◦ gn converges up to subsequence to a uniformly bi-Lipschitz Ψ∞
where the conjugating maps are defined. Observe that since depthQn(pn) → ∞ as n→ ∞, the
compact sets gn(K) are arbitrarily deep in the convex core of Qn as n→ ∞. Theorem 5.6 then
implies that, for any ε > 0 and any K, the maps Ψn can be taken to be (1 + ε)-bi-Lipschitz
on gn(K) for n sufficiently large. Diagonalizing, the limit Ψ∞ is an isometry. As the group of
isometries of any hyperbolic 3-manifold is discrete, we may pass to the quotient by the action
of 〈Ψ∞〉. The quotient of Q∞/〈Ψ∞〉 is a hyperbolic 3-manifold with the fundamental group
π1(Tψ), and is thus homeomorphic Tψ by Stallings’ theorem [37].

Remark. Note that in Thurston’s original proof significant extra work is required to show
that the limit Q∞ is doubly degenerate, or that the limit set of Γ∞ is the entire sphere (see [35,
Section 6.2]). In our approach the double degeneracy of Q∞ is immediate from our estimates
on the depth of the basepoint in the convex core and the strong convergence of Qn.
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