Boundaries of Teichmüller spaces and end-invariants for hyperbolic 3-manifolds

Jeffrey F. Brock

ABSTRACT. We study two boundaries for the Teichmüller space of a surface Teich(S) due to Bers and Thurston. Each point in Bers' boundary is a hyperbolic 3-manifold with an associated geodesic lamination on S, its *endinvariant*, while each point in Thurston's is a *measured* geodesic lamination, up to scale. We show that when $\dim_{\mathbb{C}}(\text{Teich}(S)) > 1$ the end-invariant is not a continuous map to Thurston's boundary modulo forgetting the measure with the quotient topology. We recover continuity by allowing as limits maximal measurable sub-laminations of Hausdorff limits and enlargements thereof.

Contents

1.	Introduction	1
2.	Preliminaries	5
3.	Surjectivity onto measurable laminations that relatively fill	8
4.	Lower-semi-continuity	11
5.	Continuity in the end-invariant topology	13
6.	Convergence in Bers' compactification	15
7.	The failure of the Hausdorff topology to predict the end-invariant	17
References		19

1. Introduction

In celebrated boundaries for Teichmüller space due to Bers and Thurston, geodesic laminations arise in natural ways:

- A point M in Bers' boundary, a hyperbolic 3-manifold, has an associated geodesic lamination $\mathcal{E}(M)$ that has been *pinched*. The lamination $\mathcal{E}(M)$ is an invariant of the quasi-isometry class [M] of M.
- A point $[\mu]$ in Thurston's boundary, a measured lamination μ up to scale, records the asymptotic stretching of divergent hyperbolic metrics $X_i \to [\mu]$. Its support $|\mu|$ is a geodesic lamination.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30F40; Secondary 30F60, 58F17. Research partially supported by an NSF Postdoctoral Fellowship. Date: May 14, 1999. Revised: April 30, 2000.

Thurston's ending lamination conjecture predicts that the map $[M] \mapsto \mathcal{E}(M)$ from quasi-isometry classes in Bers' boundary to the quotient of Thurston's boundary by forgetting the measure is an injection. In other words, if one knows the lamination $\mathcal{E}(M)$, one knows the manifold M up to quasi-isometry. The map \mathcal{E} gives a bijection between dense subsets: the dense family of maximal cusps M (a maximal family of simple closed curves is pinched in M) is mapped by \mathcal{E} to the dense set of maximal partitions of S by simple closed curves (which are analogous to rational points of S^1). Thus, given Thurston's conjecture, it is natural to ask whether \mathcal{E} is a homeomorphism. Or, as a starting point, how do sequences $\mathcal{E}(M_n)$ behave under limits $M_n \to M$?

In this paper we show \mathcal{E} has the following continuity properties:

- I. E is strictly lower-semi-continuous in the quotient topologies,
- II. \mathcal{E} is continuous in a new *end-invariant topology*, based on the Hausdorff topology, which predicts new information about its limiting values, and
- III. E cannot have a continuous inverse in the end-invariant topology, nor do Hausdorff limits completely encode the limiting end-invariant in general.

To state our results more precisely, we review terminology.

Let S be an oriented surface, closed for simplicity, and let Q(X, Y) denote the quasi-Fuchsian Bers simultaneous uniformization of the pair of surfaces $(X, Y) \in$ Teich $(S) \times$ Teich (\overline{S}) (where \overline{S} is S with the reverse orientation). Such uniformizations sit in the closed subset AH(S) of the representation variety

$$\mathcal{V}(S) = \operatorname{Hom}(\pi_1(S), \operatorname{PSL}_2(\mathbb{C}))/\operatorname{conjugation}$$

consisting of representations that are discrete and faithful.

The map $Q: \operatorname{Teich}(S) \times \operatorname{Teich}(\overline{S}) \to AH(S)$ is a homeomorphism onto its image, the quasi-Fuchsian space $QF(S) \subset AH(S)$. Fixing Y in the second factor gives the *Bers slice* $B_Y \cong \operatorname{Teich}(S)$ of QF(S). Bers proved B_Y has compact closure in AH(S), giving rise to a *Bers compactification* $\overline{B_Y}$ and a *Bers boundary* ∂B_Y .

The measured laminations $\mathcal{ML}(S)$ on S are a natural completion of the isotopy classes of essential simple closed curves on S with positive real weights. Projectivizing, one obtains a sphere $\mathcal{PL}(S) = \mathcal{ML}(S) - \{0\}/\mathbb{R}_+$ of projective measured laminations with which Thurston compactifies Teich(S). On any hyperbolic surface X, each measured lamination μ determines a geodesic lamination, a closed subset of X foliated by geodesics, as its support $|\mu|$.

Representations $\rho \in AH(S)$ are in bijection with marked hyperbolic 3-manifolds $(f: S \to M)$ up to homotopy, where $M = \mathbb{H}^3/\rho(\pi_1(S))$ and $f_* = \rho$. Thurston associates an end-invariant $\mathcal{E}(M)$ to each $M \in \partial B_Y$, namely, the geodesic lamination consisting of all non-peripheral parabolics and laminations on which any measure has 'length-zero' in M (see §2). Since any such geodesic lamination is measurable (it arises in the quotient of Thurston's boundary by forgetting the measure), \mathcal{E} gives a mapping

$$\mathcal{E} \colon \partial B_Y \to \mathcal{PL}(S)/|.|.$$

The lamination $\mathcal{E}(M)$ is an invariant of the marked quasi-isometry class [M] of M. Letting $\partial B_Y/\operatorname{qi}$ denote the quotient of ∂B_Y by marking preserving quasi-isometry, \mathcal{E} descends to a mapping $\mathcal{E}: \partial B_Y/\operatorname{qi} \to \mathcal{PL}(S)/|.|$ which we also denote by \mathcal{E} .

Our first theorem is the following.

THEOREM 1.1. The mapping \mathcal{E} is strictly lower-semi-continuous in the quotient topologies on domain and range.

Here, lower-semi-continuity means:

for $[M_n] \to [M]$ any limit \mathcal{E}_{∞} of $\{\mathcal{E}([M_n])\}$ satisfies $\mathcal{E}_{\infty} \subset \mathcal{E}([M])$.

Strict lower-semi-continuity means there exists $M_n \to M$ for which the final containment is proper (see theorem 4.1).

Note that maximal families of pairwise disjoint, essential simple closed curves are dense in $\mathcal{PL}(S)/|.|$. These are the images under \mathcal{E} of maximal cusps: 3-manifolds $M \in \partial B_Y$ for which the curves in such a maximal family are parabolic. The invariant $\mathcal{E}(M)$ determines the maximal cusp M up to isometry. The question of the continuity properties of \mathcal{E} is then motivated by

THEOREM 1.2 (McMullen). Maximal cusps are dense in ∂B_Y .

Theorem 1.1 contrasts the behavior of maximal families as measures and as parabolics in the passage to limits.

Before recovering continuity, we give a characterization of the laminations that can arise in the image of \mathcal{E} . A measurable lamination $\nu \in \mathcal{PL}(S)/|.|$ fills a compact surface S if for any essential simple closed curve α on S that is not parallel to ∂S , α intersects ν . Decompose ν into the union $\nu = P \sqcup E$ of its simple closed curve components P and its infinite minimal components E for which every leaf is infinite and dense in its component. We say ν relatively fills S if any component ν' of E fills the subsurface of S - P that it meets. Let $\mathcal{EL}(S)$ be the quotient of the quotient $\mathcal{PL}(S)/|.|$ obtained assigning to $\nu \in \mathcal{PL}(S)/|.|$ the lamination $\hat{\nu} \in \mathcal{PL}(S)/|.|$ given by by adding to ν the minimal set of simple closed curves required to obtain a lamination that relatively fills S.

Compactness theorems for Thurston's *pleated surfaces* show that \mathcal{E} takes values in $\mathcal{EL}(S)$ (§3). Given $\nu \in \mathcal{EL}(S)$, we may use theorem 1.1 to find an $M \in \partial B_Y$ for which $\mathcal{E}(M) = \nu$: pinching P and families of simple closed curves approximating E to cusps, we extract a limit M with $\mathcal{E}(M) = \nu$. This gives a new proof¹ of:

THEOREM 1.3. The mapping \mathcal{E} is a surjection onto $\mathcal{EL}(S)$.

We introduce a new topology on $\mathcal{EL}(S)$: the *end-invariant topology* is the topology of convergence for which

(*) $\nu_n \to \nu$ if for any subsequence ν_{n_j} converging to λ_H in the Hausdorff topology, ν contains the maximal measurable sub-lamination η of λ_H .

(The end-invariant topology, like the quotient topologies, is non-Hausdorff). Then we obtain the following strengthening of theorem 1.1 (theorem 5.3):

THEOREM 1.4. The mapping \mathcal{E} is continuous from the quotient topology on $\partial B_Y/\operatorname{qi}$ to $\mathcal{EL}(S)$ with the end-invariant topology.

In general, given a convergent sequence $M_n \to M$ in ∂B_Y , the end-invariants $\mathcal{E}(M_n)$ need not converge in the Hausdorff topology. Theorem 1.4 forces the measurable sub-laminations of any pair Hausdorff limits of $\mathcal{E}(M_n)$ into alignment.

The main techniques in this paper are developed in $[\mathbf{Br1}]$ where we prove a bi-continuity theorem for the *lengths* of measured laminations realized by pleated surfaces in hyperbolic 3-manifolds. The end invariant $\mathcal{E}(M)$ is the zero-set of this length function when M is fixed.

These questions relate to the following

¹K. Ohshika gave a proof of surjectivity of \mathcal{E} in [**Ohs1**] but his proof assumed a special case of the main result of [**Br1**]. This special case was claimed by Thurston but had not appeared.

JEFFREY F. BROCK

CONJECTURE 1.5 (Thurston). The map $\mathcal{E}: \partial B_Y/\operatorname{qi} \to \mathcal{EL}(S)$ is a bijection.

One may speculate as to whether \mathcal{E} gives a homeomorphism in any reasonable topology on $\mathcal{EL}(S)$. Theorems 1.2 and 1.4 show \mathcal{E} cannot have a continuous inverse in the end-invariant topology (§7).

Convergence in a Bers compactification. The possibility of pinching in the conformal boundary of M means the end-invariant topology must allow for the constant sequence to enlarge in the limit. We record this extra information by considering maximal families of disjoint simple closed curves on $\partial M - Y$ whose lengths in M and on Y are in small ratio. Indeed, given $M_n \to M$ in the Bers compactification $\overline{B_Y}$ there is a family $\Pi(M_n)$ of such curves so that $\mathcal{E}(M_n) \sqcup \Pi(M_n)$ is a geodesic lamination and

$$\lim_{n \to \infty} \max_{\gamma \in \Pi(M_n)} \frac{\operatorname{length}_{M_n}(\gamma)}{\operatorname{length}_{Y}(\gamma)} = 0.$$

Then we prove the following (see corollary 6.3):

THEOREM 1.6. The laminations $\mathcal{E}(M_n) \sqcup \Pi(M_n)$ converge to $\mathcal{E}(M)$ in the endinvariant topology.

In the case when each $\mathcal{E}(M_n)$ is maximal (a maximal partition, say) it is reasonable to ask whether given the maximal measurable sub-lamination η of the Hausdorff limit λ_H of $\mathcal{E}(M_n)$, the lamination $\hat{\eta}$ is the full end-invariant $\mathcal{E}(M)$. Though the answer is yes in many cases, we conclude this paper with a negative answer to this question in general (see theorem 7.1):

THEOREM 1.7. IMPLICIT CUSPS Let γ be an essential simple closed curve in S. Then for any other essential simple closed curve α in $S - \gamma$, there are maximal partitions $C_n \to \lambda_H$ in the Hausdorff topology and associated maximal cusps $M(C_n) \to M$ in ∂B_Y for which:

1. γ is the maximal measurable sub-lamination of λ_H , and

2. α lies in $\mathcal{E}(M)$.

The curve α is an "implicit cusp" forced by 3-dimensional hyperbolic geometry that, somewhat surprisingly, goes undetected by the Hausdorff topology. The example producing theorem 1.7 reveals a new geometric phenomenon that complicates the relationship between hyperbolic surfaces and the 3-manifolds they parameterize.

History and references. The density of maximal cusps in Bers' boundary is proven by McMullen in [Mc2]. Whether or not appropriate quotients of Bers' and Thurston's boundaries are homeomorphic is asked by McMullen in [Mc3]. For informative discussions of the end-invariant see [Mc4] and [Min2].

In general, we allow S to be compact with nonempty boundary. Indeed, when $\dim_{\mathbb{C}}(\operatorname{Teich}(S)) = 1$, Y. Minsky has shown (see [**Min3**]) that that \mathcal{E} is a homeomorphism from ∂B_Y to $\mathcal{PL}(S)$ (passing to quotients is redundant as the support $|\mu|$ of any measured lamination $\mu \in \mathcal{ML}(S)$ admits a unique transverse measure up to scale, and Minsky proves that $\mathcal{E}(M)$ determines M up to isometry). Note that in this setting $\mathcal{E}(M)$ is always connected, while when $\dim_{\mathbb{C}}(\operatorname{Teich}(S)) > 1$, the invariant $\mathcal{E}(M)$ can be disconnected.

Thurston introduces pleated surfaces and lengths of laminations in [Th1], [Th2], and [Th4]. Various versions of Thurston's length function are discussed

in [**Th4**], [**Bon3**] and [**Ohs2**]; we prove a general bi-continuity theorem (see theorem 2.3) in [**Br1**] where the key lemmas on nearly-straight train tracks employed in the proof of theorem 1.4 ([**Br1**, Lem. 5.2, Cor. 5.3]) also appear.

We have chosen to work in the Bers slice to avoid certain technicalities that arise in more general deformation spaces of hyperbolic 3-manifolds. We remark that work of J. Anderson and R. Canary [AC] reveals a different type of possible discontinuity in the analogous end-invariant mapping for general deformation spaces (see $[Min3, \S12]$). We plan to merge these two perspectives in a sequel.

Acknowledgements. I would like to thank Curt McMullen for posing this question and for his helpful suggestions, as well as Yair Minsky and Dick Canary for many discussions concerning this work. I would also like to thank the referees for many useful comments.

2. Preliminaries

Let S be an oriented compact topological surface of negative Euler characteristic. We allow S to have non-empty boundary; let $int(S) = S - \partial S$ denote its interior.

Teich(S). The *Teichmüller space* Teich(S) is the space of finite-area hyperbolic surfaces X equipped with homeomorphisms $f: \text{int}(S) \to X$ such that

$$(f: \operatorname{int}(S) \to X) \sim (g: \operatorname{int}(S) \to Y)$$

if there is an isometry $\phi: X \to Y$ so that $\phi \circ f \simeq g$.

The topology on Teich(S) is induced by the natural distance d(X, Y) obtained by taking the infimum K over all k for which there is a k-bi-Lipschitz diffeomorphism ϕ homotopic to $g \circ f^{-1}$ and setting $d(X, Y) = \log(K)$. The Teichmüller space is homeomorphic to an open ball and carries a natural complex structure of dimension dim_C(Teich(S)) = 3g - 3 + n, where S has genus g with n boundary components.

AH(S). Let $\mathcal{D}(S)$ denote the space of discrete faithful representations $\rho: \pi_1(S) \to \text{Isom}^+(\mathbb{H}^3)$ so that $\rho(\gamma)$ is parabolic for each peripheral element $\gamma \in \pi_1(S)$ (i.e. γ is boundary-parallel), with the compact-open topology, or the topology of algebraic convergence. Let

$$AH(S) = \mathcal{D}(S)/\mathrm{Isom}^+(\mathbb{H}^3)$$

be its quotient by conjugation.

By a theorem of Thurston and Bonahon [**Th1**, Ch. 9] [**Bon1**] $M = \mathbb{H}^3/\rho(\pi_1(S))$ is a complete hyperbolic manifold homeomorphic to $\operatorname{int}(S) \times \mathbb{R}$. The complete hyperbolic manifold M is prolonged to its *Kleinian manifold* \overline{M} by adding its conformal boundary ∂M : namely, the quotient of the domain $\Omega(M) \subset \widehat{\mathbb{C}}$ where $\rho(\pi_1(S))$ acts properly discontinuously.

The set of hyperbolic 3-manifolds M marked by homotopy equivalences $(f: S \to M)$ up to marking-preserving isometry is in bijection with conjugacy classes of representations $\rho \in AH(S)$ via the association $f \mapsto f_*$. Thus we will often speak of AH(S) as a space of marked hyperbolic manifolds and write $M \in AH(S)$, assuming an implicit marking homotopy equivalence $(f: S \to M)$.

One may formulate algebraic convergence in this context: $\{(f_n: S \to M_n)\}$ converges to $(f: S \to M)$ if for any compact set $K \subset M$ there are smooth, markingpreserving homotopy equivalences $q_n: M \to M_n$ that converge to a local isometry on K in the C^{∞} topology (see [Mc5, §3.1]; we refer the reader to [Mc5], [Th1], or [Br2] for details about hyperbolic 3-manifolds and Kleinian groups).

QF(S). By a theorem of Bers [Bers1] there is unique quasi-Fuchsian manifold $Q(X,Y) \in AH(S)$ interpolating between any pair of hyperbolic surfaces $(X,Y) \in$ Teich $(S) \times$ Teich (\overline{S}) in its conformal boundary. Given $Y \in$ Teich(S), the Bers slice

$$B_Y = \{Q(X, Y) : X \in \operatorname{Teich}(S)\}$$

is an embedded copy of Teich(S) in AH(S). The embedding depends on Y, but for any Y the slice B_Y is precompact in AH(S). One obtains a *Bers compactification* $\overline{B_Y}$ by forming the closure, and an associated *Bers boundary* for Teichmüller space as its boundary ∂B_Y (see also [**KT**], [**Mc5**], or [**Bers2**]).

 $\mathcal{ML}(S)$. Let S be the set of isotopy classes of essential non-peripheral simple closed curves on S. The geometric intersection number

$$i: \mathbb{S} \times \mathbb{S} \to \mathbb{Z}_{\geq 0}$$

counts the minimal number $i(\alpha, \beta)$ of intersections of curves in distinct isotopy classes (α, β) in $S \times S$ and takes the value zero on the diagonal.

Attaching a positive real weight to each isotopy class, let

$$\iota \colon \mathbb{R}_+ \times \mathbb{S} \to \mathbb{R}^{\mathbb{S}}$$

be defined by

$$\langle \iota(t\gamma) \rangle_{\alpha} = ti(\alpha, \gamma).$$

Then we define the measured laminations $\mathcal{ML}(S) = \overline{\iota(\mathbb{R}_+ \times \mathbb{S})}$ by taking the closure of the image (note that weighted simple closed curves are naturally dense in $\mathcal{ML}(S)$). The intersection number extends to a symmetric continuous function $i: \mathcal{ML}(S) \times \mathcal{ML}(S) \to \mathbb{R}_{\geq 0}$ so that $i(s \alpha, t \beta) = s \cdot t(i(\alpha, \beta))$ for $\alpha, \beta \in \mathbb{S}$ and $s, t \in \mathbb{R}_{\geq 0}$ [Bon1, Prop. 4.5].

The measured lamination space $\mathcal{ML}(S)$ is a cell of the same real dimension as Teich(S). The projective measured laminations $\mathcal{PL}(S) = \mathcal{ML}(S) - \{0\}/\mathbb{R}_+$ form a sphere of one dimension lower. The sphere $\mathcal{PL}(S)$ is Thurston's boundary for Teichmüller space - the topology on Thurston's compactification Teich(S) $\sqcup \mathcal{PL}(S)$ is determined by the conditions that Teich(S) is open in Teich(S) $\sqcup \mathcal{PL}(S)$ and $X_n \to [\mu] \in \mathcal{PL}(S)$ if and only if

$$\frac{\operatorname{length}_{X_n}(\alpha)}{\operatorname{length}_{X_n}(\beta)} \to \frac{i(\mu, \alpha)}{i(\mu, \beta)}$$

for any pair α and β in S for which $i(\mu, \beta) \neq 0$. (For more on measured and projective laminations, and Thurston's compactification see [**FLP**], [**Th1**], or [**Bon2**]).

Subsurfaces. A subsurface is a compact 2-submanifold of S. An essential subsurface $T \subset S$ is a subsurface so that each curve in ∂T is homotopically essential. Given an essential subsurface $T \subset S$, let $\mathcal{S}(T) \subset \mathcal{S}$ be isotopy classes of simple closed curves in \mathcal{S} isotopic into T that are non-peripheral in T. Then $\mathcal{ML}(T)$ is naturally a closed subspace of $\mathcal{ML}(S)$.

 $\mathcal{GL}(S)$. Given $X \in \operatorname{Teich}(S)$, a geodesic lamination λ on X is a closed subset of X that admits a decomposition into complete simple geodesics called *leaves* of λ . The set of geodesic laminations $\mathcal{GL}(X)$ on X is a compact subspace of the space of closed subsets $\operatorname{Cl}(X)$ in the Hausdorff topology.

Via a natural circle at infinity for S, geodesic laminations are canonically associated to the surface S and can be realized geodesically on any $X \in \text{Teich}(S)$ via its implicit marking (see [**Bon2**], [**Fl**], or [**CEG**, §4.1]). Thus we will speak of a point $\lambda \in \mathcal{GL}(S)$, which determines a geodesic lamination on any particular hyperbolic surface $X \in \text{Teich}(S)$. Given $\lambda \subset \mathcal{GL}(S)$, let $S(\lambda) \subset S$ be the essential subsurface obtained by realizing λ on $(f: S \to X) \in \text{Teich}(S)$ and pulling back by f^{-1} the smallest subsurface with geodesic boundary containing λ .

A measured lamination $\mu \in \mathcal{ML}(S)$ determines a transverse measure on a geodesic lamination $|\mu|$. The geodesic lamination $|\mu|$ is called the support of μ . A geodesic lamination ν is measurable if there is some $\mu \in \mathcal{ML}(S)$ for which $\nu = |\mu|$; ν admits a transverse measure of full support.

Given $\lambda, \nu \in \mathcal{GL}(S)$, the notation $\lambda \subset \nu$ will mean that λ is a sub-lamination of ν , while the notation $\lambda \cap \nu$ will refer to any common sublamination of λ and ν together with the set of transverse intersections of leaves of λ and ν , well defined on any hyperbolic surface $X \in \text{Teich}(S)$.

Pleated surfaces. Let $(f: S \to M) \in AH(S)$ and let $\lambda \in \mathcal{GL}(S)$ be a geodesic lamination. We say λ is *realizable* in M if there is a hyperbolic surface $X \in \text{Teich}(S)$, and a *path-isometry*² $g: X \to M$, compatible with markings on X and M, so that $g|_{\lambda}$ is a local isometry. If g is totally geodesic on the complement of some geodesic lamination λ' containing λ , the triple (g, X, M) is called a *pleated surface* in M, and we say the pleated surface *realizes* λ . A measured lamination $\mu \in \mathcal{ML}(S)$ is *realizable* in M if its support $|\mu|$ is realizable. Any realizable lamination can be realized by a pleated surface.

Let $\mathcal{PS}(f)$ denote the set of all pairs (g, X), where $(\phi: S \to X) \in \operatorname{Teich}(S)$, and $g: X \to M$ is a pleated surface with $f \simeq g \circ \phi$. Let $\mathcal{PS}_{np}(f) \subset \mathcal{PS}(f)$ be the subset for which $f_*(\gamma)$ is parabolic only if γ is a peripheral element of $\pi_1(S)$.

We topologize $\mathcal{PS}(f)$ by the Teichmüller distance on the underlying surfaces and the topology of uniform convergence on compact sets on the pleated mappings. In other words, $(g_n, X_n) \to (g, X)$ if there are marking-preserving bi-Lipschitz diffeomorphisms $q_n: X \to X_n$ with bi-Lipschitz constant tending to 1 so that the composition $g_n \circ q_n$ converges uniformly on compact subsets to g. Then we have the following compactness result due to Thurston (see [**CEG**, 5.2.18]):

THEOREM 2.1 (Thurston). PLEATED SURFACES COMPACT Let $(f: S \to M) \in AH(S)$, and let $K \subset M$ be a compact subset. Then the set of all $(g, X) \in \mathcal{PS}_{np}(f)$ with the property that $g(X) \cap K \neq \emptyset$ is compact.

Also relevant is the following theorem which we restate in a form useful to us.

THEOREM 2.2 (Thurston). LIMITS REALIZED Let $\{(g_n, X_n)\} \subset \mathcal{PS}_{np}(f)$ converge to (g, X) and let (g_n, X_n) realize convergent measured laminations $\mu_n \to \mu$. Then (g, X) realizes μ .

(The theorem is a direct consequence of [CEG, 5.3.2]).

Lengths of laminations. Given $X \in \text{Teich}(S)$, any isotopy class $\gamma \in S$ has a well defined *length* by taking the arclength $\ell_X(\gamma^*)$ of its geodesic representative γ^* . By a theorem of Thurston and Bonahon (see [**Th4**] [**Bon1**, Prop. 4.5]) there is a unique continuous function

length: Teich
$$(S) \times \mathcal{ML}(S) \to \mathbb{R}$$

²The map g sends geodesic arcs in X to rectifiable arcs in M of the same length.

that restricts to $\mathbb{R}_+ \times \mathbb{S}$ by

$$\operatorname{length}_X(t\gamma) = t\ell_X(\gamma^*).$$

Let $\mathfrak{R} \subset AH(S) \times \mathcal{ML}(S)$ denote the set of pairs (M, μ) such that μ is realizable in M. We define the *length function*

length:
$$\mathfrak{R} \to \mathbb{R}$$

by setting $\operatorname{length}_{M}(\mu) = \operatorname{length}_{X}(\mu)$ where $g \colon X \to M$ is any pleated surface realizing $|\mu|$ (the length in M does not depend on the realizing pleated surface; see [**Th4**] [**Bon4**]).

When μ is not realizable in M, proper sub-laminations may still be realizable. Define the projection map

$$\mathbf{R}_M \colon \mathcal{ML}(S) \to \mathcal{ML}(S)$$

to be the identity on laminations realizable in M and to associate to any nonrealizable lamination μ the maximal sub-lamination $R_M(\mu)$ of μ that is realizable in M.

Then we have the following from **[Br1**]:

THEOREM 2.3. LENGTH CONTINUOUS The function

length: $AH(S) \times \mathcal{ML}(S) \to \mathbb{R}$

given by $(M, \mu) \rightarrow \text{length}_M(\mathbf{R}_M(\mu))$ is continuous.

In particular, we have the following corollary:

COROLLARY 2.4. Let pairs $\{(M_n, \mu_n)\}$ converge to (M, μ) in $AH(S) \times \mathcal{ML}(S)$ so that $\underline{\text{length}}_M(\mu_n) \to 0$. Then $R_M(\mu) = 0$.

In other words, if μ lies in $\mathcal{ML}(S)_+$, the non-zero elements of $\mathcal{ML}(S)$, and $\underline{\operatorname{length}}_M(\mu) = 0$, then each component of μ is non-realizable in M.

The end invariant $\mathcal{E}(M)$. We make the following definition.

DEFINITION 2.5. Let $M \in \partial B_Y$ be a point in a Bers' boundary. Then its end invariant $\mathcal{E}(M)$ is the union of all connected geodesic laminations λ such that for some $\mu \in \mathcal{ML}(S)_+$ we have,

$$\lambda = |\mu|$$
 and length $_{M}(\mu) = 0.$

By a theorem of Thurston and Bonahon (the geometric tameness of M [Th1], [Bon1]), $\mathcal{E}(M)$ lies in $\mathcal{PL}(S)/|.|$; i.e. $\mathcal{E}(M)$ is itself a measurable geodesic lamination.

Notation: Throughout, the notation $n \gg 0$ will mean 'all *n* sufficiently large.' Unless otherwise stated, constants will depend only on *S*.

3. Surjectivity onto measurable laminations that relatively fill

In this section, we reprise implications of compactness of pleated surfaces on the basic structure of $\mathcal{E}(M)$ (this theory is developed in [**Th1**, Ch. 9]) and go on to give a characterization of laminations that arise in the image of \mathcal{E} .

Decomposing laminations. A partition P of S is a collection $P \subset S$ of distinct isotopy classes of pairwise-disjoint, essential, non-peripheral, simple closed curves on S. A maximal partition is a partition that cannot be enlarged. The partition P

determines a collection of essential subsurfaces in its complement as the complement of pairwise embedded open annular neighborhoods of each curve in P. Let S - P denote their union, abusing notation.

Each measurable lamination ν (i.e. $\nu \in \mathcal{PL}(S)/|.|$) admits a decomposition

 $\nu = P(\nu) \sqcup E(\nu)$

where $P(\nu) \subset S$ is a partition, and each component of $E(\nu)$ is infinite and *minimal*: each leaf of $E(\nu)$ is bi-infinite and dense in its component. A general geodesic lamination λ decomposes into its maximal measurable sub-lamination $\nu \subset \lambda$ and a finite collection of bi-infinite leaves each end of which is either asymptotic to ν or to a puncture of S (see [**Otal**, §A]).

The measurable lamination ν fills S if for each $\alpha \in \mathbb{S}$, and any measure $\mu \in \mathcal{ML}(S)$ with $|\mu| = \nu$ we have either $i(\mu, \alpha) > 0$ or α is peripheral in S. Concerning we make the following definition

Generalizing, we make the following definition.

DEFINITION 3.1. The measurable lamination ν relatively fills S if for each component $\nu' \subset E(\nu)$, ν' fills the subsurface component of $S - P(\nu)$ in which it lies.

We define $\mathcal{EL}(S) \subset \mathcal{PL}(S)/|.|$ to be the subset of laminations that relatively fill S. Each measurable ν has an *implicit partition* $\widehat{P}(\nu)$: this is the minimal partition containing $P(\nu)$ so that $E(\nu) \sqcup \widehat{P}(\nu)$ is a lamination that relatively fills S. There is a natural projection

 $\mathcal{PL}(S)/|.| \to \mathcal{EL}(S)$ given by $\nu \mapsto E(\nu) \sqcup \widehat{P}(\nu);$

let $\hat{\nu} = E(\nu) \sqcup \hat{P}(\nu)$ (see figure 1).

Figure 1. Adding the implicit partition $\widehat{P}(\nu)$.

In this section we prove the following:

THEOREM 3.2. The map \mathcal{E} is a surjection onto $\mathcal{EL}(S)$.

We first prove \mathcal{E} is well-defined as a map to $\mathcal{EL}(S)$.

LEMMA 3.3. For any $M \in \partial B_Y$, the end-invariant $\mathcal{E}(M)$ relatively fills S.

Proof: Let $(f: S \to M)$ be the implicit marking for M, and let $\mathcal{E}(M) = P \sqcup E$ be the decomposition of $\mathcal{E}(M)$ into its sets of parabolics P and infinite minimal components E. If $\mathcal{E}(M)$ does not relatively fill S, then for some connected sublamination $\nu \subset E$ lying in a connected component T of S - P, there is a simple closed curve $\gamma \in \mathcal{S}(T)$ in the implicit partition for ν that is non-peripheral in T. It follows that γ is not parabolic in M and is therefore realizable (see [**Th1**, §9.7], [**CEG**, Thm. 5.3.11]). Let $t_n c_n \to \mu$, be a sequence of weighted simple closed curves converging to a measured lamination μ with support $\nu = |\mu|$ so that $i(\gamma, c_n) = 0$. There is a sequence of pleated surfaces $(g_n, X_n) \in \mathcal{PS}_{np}(f|_T)$ realizing $\gamma \cup c_n$. Since (g_n, X_n) all realize γ , a subsequence converges to $(g, X) \in \mathcal{PS}_{np}(f|_T)$ by theorem 2.1. By theorem 2.2, the limit realizes ν , a contradiction. Thus γ either intersects ν or lies in P, so ν relatively fills S.

(A similar argument appears in [Br2, Thm. 4.7]).

Proof: (of theorem 3.2). Let $\nu \in \mathcal{EL}(S)$. Then there is a measured lamination $\mu \in \mathcal{ML}(S)$ so that $|\mu| = \nu$. Let $\Pi = P(\nu)$, let $E(\nu) = \nu_1 \sqcup \ldots \sqcup \nu_k$, and let

 $S - \Pi = S_1 \sqcup \ldots \sqcup S_k \sqcup T_1 \sqcup \ldots \sqcup T_s$

denote the collection of subsurfaces of S determined up to isotopy as the complement of small pairwise embedded open annular neighborhoods of the curves in Π , so that ν_j lies in $\mathcal{GL}(S_j), j = 1, \ldots, k$. Let $\mu_j \subset \mu$ denote the measured sub-lamination so that $|\mu_j| = \nu_j$.

For each j, let $\{c_{j,n}\} \subset S$ be simple closed curves in $S(S_j)$ so that for positive real weights $t_{j,n}$ we have $t_{j,n}c_{j,n} \to \mu_j$ as $j \to \infty$. Letting $\mu_{\Pi} \subset \mu$ be the measure determined by μ on Π (i.e. $|\mu_{\Pi}| = \Pi$), the unions

$$\xi_n = \mu_{\Pi} \bigcup \left(\bigsqcup_{j=1}^k t_{j,n} c_{j,n} \right)$$

are measured laminations so that $\xi_n \to \mu$ in $\mathcal{ML}(S)$.

A maximal partition $\mathcal P$ of S determines Fenchel-Nielsen length and twist coordinates

$$(\operatorname{length}_{\gamma}(X), \operatorname{twist}_{\gamma}(X)) \in \mathbb{R}^{\mathcal{P}}_{+} \times \mathbb{R}^{\mathcal{P}}$$

for $X \in \text{Teich}(S)$, where $\gamma \in \mathcal{P}$ (see e.g. **[IT]**). Given a subset $P \subset \mathcal{P}$, the *pinching* deformation along P is the family of Riemann surfaces $X_t \in \text{Teich}(S), t \to 0$, determined by setting the coordinates

$$\operatorname{length}_{\gamma}(X_t) = t \operatorname{length}_{\gamma}(X)$$

for each $\gamma \in P$ and leaving all other coordinates unchanged. Then the pinching deformation along P determines a path $Q(X_t, Y)$ in B_Y that converges to a limit $M \in \partial B_Y$ with $\mathcal{E}(M) = P$ (see [Ab], [Mc6, Thm. 9.5]).

Let $M_n \in \partial B_Y$ be obtained from the quasi-Fuchsian manifold Q(X,Y) by performing the pinching deformation along the collection

$$P_n = |\xi_n| = \prod \bigcup \left(\sqcup_{j=1}^k c_{j,n} \right)$$

on X. For given r, and for each M_n let $W_n \in \operatorname{Teich}(T_r)$ denote the corresponding conformal boundary component of M_n . With respect to a fixed maximal partition \mathcal{P}_T of $\cup_r T_r$, the Fenchel-Nielsen coordinates for W_n are the limiting Fenchel-Nielsen coordinates for X_t along $\mathcal{P}_T \cap T_r$. Hence, they do not depend on n and W_n is constant; we set $W_n = W$.

We have

$$\underline{\operatorname{length}}_{M_n}(\xi_n) = 0$$

for all n. By continuity of length [**Br1**, Thm. 7.1], we have

$$\underline{\text{length}}_M(\mu) = 0.$$

Since $\mu \in \mathcal{ML}(S)_+$, it follows that each component of μ is non-realizable in M. Thus $\nu = |\mu|$ is a sub-lamination of $\mathcal{E}(M)$.

Let $f: S \to M$ denote the implicit marking on M, and let $\pi_1(T_r)$ denote the subgroup of $\pi_1(S)$ induced by inclusion $T_r \subset S$ after choosing a basepoint in T_r . Since $\mathcal{E}(M)$ relatively fills S by lemma 3.3, to see that $\nu = \mathcal{E}(M)$ it suffices to show that the cover $\widetilde{M}(r)$ of M corresponding to $f_*(\pi_1(T_r))$ is quasi-Fuchsian (every lamination is realizable in a quasi-Fuchsian manifold, see [**Th1**, Prop. 8.7.7] [**CEG**, Thm. 5.3.11]).

Let $f_n: S \to M_n$ denote the implicit markings on M_n . For fixed r, the cover of M_n corresponding to $(f_n)_*(\pi_1(T_r))$ is a quasi-Fuchsian manifold $Q(W, Z_n) \in QF(T_r)$. The cover \widetilde{Y}_r of Y corresponding to $\pi_1(T_r)$ (which is no longer of finite type) admits a holomorphic inclusion into Z_n , which is a contraction of the Poincaré metric by the Schwarz lemma. Thus, there is a pair of simple closed curves α and β in $S(T_r)$ that bind T_r (i.e. $i(\alpha, \gamma) + i(\beta, \gamma) > 0$ for any $\gamma \in S(T_r)$) and have uniformly bounded length in Z_n . Such a bound guarantees that Z_n range in a compact subset of Teich (T_r) (see e.g. [**Th4**, Prop. 2.4] [**Ker**]) so $Q(W, Z_n)$ converges to a quasi-Fuchsian manifold $Q(W, Z_\infty)$. Thus $\widetilde{M}(r)$ is quasi-Fuchsian, since it is the limit of $Q(W, Z_n)$.

It follows that $\nu = \mathcal{E}(M)$, and the theorem is proven.

4. Lower-semi-continuity

From now on, we view \mathcal{E} as a map from quasi-isometry classes $[M] \in \partial B_Y/\operatorname{qi}$ to the quotient $\mathcal{EL}(S)$ of $\mathcal{PL}(S)$ under the projection $[\mu] \mapsto \widehat{|\mu|}$. In this section we investigate the behavior of \mathcal{E} in the quotient topologies on domain and range.

THEOREM 4.1. Let $\dim_{\mathbb{C}}(\operatorname{Teich}(S)) > 1$. Then the mapping \mathcal{E} is strictly lowersemi-continuous in the quotient topologies.

Again, 'lower-semi-continuity' has the interpretation:

(4.1) Given $[M_n] \to [M]$ any limit \mathcal{E}_{∞} of $\{\mathcal{E}([M_n])\}$ satisfies $\mathcal{E}_{\infty} \subset \mathcal{E}([M])$,

and strict lower-semi-continuity means there exists $M_n \to M$ for which the final containment is proper. As remarked, when $\dim_{\mathbb{C}}(\operatorname{Teich}(S)) = 1$, \mathcal{E} is a homeomorphism [**Min3**].

Proof: We first find a point of discontinuity for \mathcal{E} (to prove strict lower-semicontinuity). Since dim_C(Teich(S)) > 1 we can find a pair of distinct isotopy classes γ and δ in S with $i(\gamma, \delta) = 0$. Let $\mathcal{P} \subset S$ be a maximal partition containing δ and γ . Adjust the Fenchel-Nielsen coordinates of $X \in \text{Teich}(S)$ along \mathcal{P} so that $X_{m,n} \in \text{Teich}(S)$ has Fenchel-Nielsen coordinates

$$\operatorname{length}_{\delta}(X_{m,n}) = 1/m$$
 and $\operatorname{length}_{\gamma}(X_{m,n}) = 1/n$

and all other coordinates equal to those of X. Then, as above, the sequence $\{Q(X_{m,n},Y)\}_{m=1}^{\infty}$ converges to a limit M_n for which $\mathcal{E}(M_n) = \gamma$. Likewise, the sequence $\{M_n\}_{n=1}^{\infty}$ converges to a limit M such that $\mathcal{E}(M) = \delta \sqcup \gamma$.

Just as a weakly convergent sequence of measures with constant support cannot converge to a measure with larger support, there is no sequence of transverse measures (weights) on the simple closed curve γ that converges in $\mathcal{ML}(S)$ to a transverse measure on $\gamma \sqcup \delta$. Hence the quasi-isometry class of M is a point of discontinuity of \mathcal{E} as a map to $\mathcal{EL}(S)$ with the quotient topology.

To see that the map \mathcal{E} is lower-semi-continuous in the sense of line 4.1, note that for any convergent sequence $M_n \to M$ in ∂B_Y , and any convergent sequence of measured laminations $\mu_n \to \mu$ with $|\mu_n| = \mathcal{E}(M_n)$, we have

$$\operatorname{length}_{M}(\mu_{n}) = 0$$

for each n. Continuity of length implies that $\underline{\text{length}}_{M}(\mu) = 0$, and we conclude

$$|\mu| \subset \mathcal{E}(M).$$

Spinning maximal cusps. We briefly give another example of discontinuity of \mathcal{E} in the quotient topologies. We do this to motivate a new topology on the range, which we introduce in the next section.

Let $C \subset S$ be a maximal partition. Then the maximal cusp $M(C) \in \partial B_Y$ is the unique point for which α is parabolic for each $\alpha \in C$. It is determined up to isometry by the collection C (see, e.g. [**Bers2**], [**Mc2**]).

As above, assume $\dim_{\mathbb{C}}(\operatorname{Teich}(S)) > 1$, let C_0 be a maximal partition for S, and let $\gamma \sqcup \delta \subset S$ be isotopy classes of disjoint simple closed curves so that $i(\alpha, \gamma)$ and $i(\alpha, \delta)$ are non-zero for each $\alpha \in C_0$.

Let τ_{γ} and τ_{δ} be Dehn-twists about γ and δ respectively, and let

$$C_n = \tau_{\gamma}^{n^2} \circ \tau_{\delta}^n(C_0),$$

where $n \in \mathbb{N}$. Consider any limit M of the sequence of maximal cusps $\{M(C_n)\}_{n=0}^{\infty}$.

Figure 2. Spinning maximal cusps. The Hausdorff limit of $C_n = \tau_{\gamma}^{n^2} \circ \tau_{\delta}^n(C_0)$ contains both γ and δ as measurable sub-laminations.

Notice that

1. Any sequence $\mu_n \in \mathcal{ML}(S)$ of measures (weights) on C_n has projective classes $[\mu_n] \in \mathcal{PL}(S)$ converging to $[1 \cdot \gamma]$. Thus theorem 4.1 guarantees only that γ is parabolic in M.

2. One expects that both classes γ and δ are parabolic in M^{3} .

The topology on $\mathcal{PL}(S)$ is insensitive to all but the maximal growth rate of transverse measure. Our goal in the next section will be to formulate a topology on $\mathcal{EL}(S)$ called the *end-invariant topology* that is sensitive to different orders of convergence. Proving continuity of \mathcal{E} in the end-invariant topology, we capture more geometric information about general limits M.

5. Continuity in the end-invariant topology

DEFINITION 5.1. The end-invariant topology on $\mathcal{EL}(S)$ is the topology of convergence for which $\nu_n \to \nu$ if for any Hausdorff limit λ_H of any subsequence ν_{n_j} , the maximal measurable sub-lamination $\eta \subset \lambda_H$ is a sub-lamination of ν .

Continuity in the end-invariant topology relies on uniform estimates for the shapes of *train tracks* in 3-manifolds.

DEFINITION 5.2. A train track τ in a hyperbolic surface $X \in \text{Teich}(S)$ is an embedded 1-complex in X whose edges (branches) are C^1 arcs meeting at vertices (switches) so that each switch v has a neighborhood $U \subset X$ for which $\tau \cap U$ is a collection of C^1 arcs passing through with a common tangent line at v. We require in addition that the double of each component of $X - \tau$ along the interiors of the branches in its boundary has negative Euler characteristic.

A train-path r is a monotone C^1 immersion $r \colon \mathbb{R} \to X$ (r is "bi-infinite") or $r \colon S^1 \to X$ (r is "closed") with image in τ . A train track τ on X carries a geodesic lamination λ if there is a C^1 map $p \colon X \to X$ that is homotopic to the identity and non-singular on the tangent spaces to the leaves of λ so that p sends each leaf of λ to a train-path for τ . We say τ minimally carries λ if for each branch b of τ , there is a train-path corresponding to a leaf of λ that traverses b.

A train track τ^* in a marked hyperbolic manifold $(f: S \to M) \in AH(S)$ is a train track τ on a hyperbolic surface $(h: S \to X) \in \text{Teich}(S)$, together with a marking-preserving smooth map $g: X \to M$ so that $g(\tau) = \tau^*$. The surface X serves to mark the train track τ^* with homotopy information: we say τ^* carries λ if τ does.

To make a train-track τ carry more laminations, we may enlarge τ by adding branches. For our purposes, we enlarge τ by adding branches b each endpoint of which either terminates in a switch of τ or attaches to a simple closed curve component of τ .

Finally, a train track τ in X (or in M) is ϵ -nearly-straight if each train path r is C^2 with geodesic curvature less than ϵ . An important property of nearly-straight train tracks is the following: for any $\epsilon_0 \in (0, 1)$ there is a "tracking constant" $C_{\rm tr} > 1$ so that for any $\epsilon \in (0, \epsilon_0)$ if τ is an ϵ -nearly-straight train track in X (resp. M), any train path r lifts to an embedding $\tilde{r} \colon \mathbb{R} \to \mathbb{P}\mathbb{H}^2$ into the projective unit tangent bundle $\mathbb{P}\mathbb{H}^2$ of \mathbb{H}^2 (resp. $\mathbb{P}\mathbb{H}^3$) that is smoothly homotopic to a complete geodesic by an isotopy that moves each point a distance less than $C_{\rm tr}\epsilon$. Assume $\epsilon_0 = 1/2$ and let $C_{\rm tr}$ be the corresponding tracking constant.

When a closed train-path on an ϵ -nearly-straight train track is straightened to its geodesic representative, its arc-length does not decrease too much: there is a

³This follows, for example, from the techniques of $[\mathbf{KT}]$ and $[\mathbf{Br2}]$ and a study of the *geomet*ric limit of $M(C_n)$; we develop a point of view more closely aligned with the present techniques.

continuous contraction bound $K: [0,1) \to [1,\infty)$ with $K(\epsilon) \to 1$ as $\epsilon \to 0$ so that any arc $\alpha \in \mathbb{H}^n$ of geodesic curvature less than ϵ satisfies

(5.2)
$$\ell(\alpha^*) \ge \frac{1}{K(\epsilon)} \ell(\alpha)$$

where α^* is the geodesic representative of α rel-endpoints (see [**Br1**, §4] or [**Min1**] for more on nearly-straight train tracks)

We employ these ideas to prove the following:

THEOREM 5.3. The mapping \mathcal{E} is a continuous surjection from the quotient topology on $\partial B_Y/\operatorname{qi}$ to $\mathcal{EL}(S)$ with the end-invariant topology.

Proof: We have shown surjectivity in theorem 3.2. It remains to show continuity in the end invariant topology.

Let $M_n \to M$ in ∂B_Y . After passing to a subsequence, let $\mathcal{E}(M_n) = \mathcal{E}_n$ tend to λ_H in the Hausdorff topology. For each n, let $P_{j,n} \subset S$ be as constructed in the proof of theorem 3.2 so that $P_{j,n} \to \mathcal{E}_n$ in the Hausdorff topology as $j \to \infty$.

Arguing as in the proof of lemma 3.3, theorem 2.1 implies that given any compact set $K \in M_n$, there is a J so that for all j > J no curve in $P_{j,n}$ has a geodesic representative intersecting K.

Let ν be any connected, measurable sub-lamination of λ_H . Suppose that ν is realizable in M by a pleated surface $g: X \to M$. Let $K \subset M$ be a compact set containing the radius 1 neighborhood $\mathcal{N}_1(g(\nu))$ of $g(\nu)$, the locally-isometric image of the geodesics in ν under g. By algebraic convergence, there are smooth, marking-preserving homotopy equivalences $q_n: M \to M_n$ that tend C^{∞} to a local isometry on K. It follows that for any $\delta > 0$, each geodesic leaf $l \subset \nu$ has image $q_n(g(l))$ with geodesic curvature less than δ for $n \gg 0$.

Therefore we may diagonalize as follows: there is a sequence $j_n \to \infty$ so that $P_{j_n,n} = P_n$ converges to λ_H in the Hausdorff topology, and so that no curve in P_n has geodesic representative intersecting the compact sets $q_n(K)$ for $n \gg 0$.

After passing to a further subsequence, there are curves $c_n \in P_n$ that converge in the Hausdorff topology to a lamination λ' so that $\nu \subset \lambda'$. Applying the construction of nearly-straight train tracks in [**Br1**, Lem. 5.2, Cor. 5.3], there is a uniform C depending only on S and the injectivity radius along the image $g(\nu)$ of ν in Mfor which the following holds: for any $\epsilon > 0$

- 1. there exists an ϵ -nearly-straight train track $\tau \subset M$ carrying ν , and
- 2. τ admits an enlargement τ_n that minimally carries c_n with a $C\epsilon$ -nearlystraight realization τ_n^* in M_n for $n \gg 0$.

Choosing ϵ and δ sufficiently small, then, for $n \gg 0$, both the image $q_n(g(\nu))$ and the train track τ_n^* lie close to the realization of ν in M_n and hence close to each other: precisely, $q_n(g(\nu))$ lies within $C_{tr}(C\epsilon + \delta)$ of τ_n^* , since τ_n^* carries ν . As τ_n^* also carries c_n , and τ_n^* is nearly-straight, c_n is realizable in M_n with geodesic representative c_n^* . Indeed, c_n^* lies within $C_{tr}C\epsilon$ of τ_n^* and thus within $C_{tr}(2C\epsilon+\delta)$ of $q_n(g(\nu))$. We have a contradiction, since either c_n is non-realizable, or its geodesic representative c_n^* lies outside $q_n(K)$ for all n sufficiently large.

The contradiction implies that ν is not realizable in M, and hence $\nu \subset \mathcal{E}(M)$.

6. Convergence in Bers' compactification

The above methods bear on the question of how the divergent surfaces $X_n \in$ Teich(S) for which $Q(X_n, Y) \to M \in \partial B_Y$ and the quotient manifolds $M_n = Q(X_n, Y)$ determine the end invariant $\mathcal{E}(M)$ of their limit in Bers' boundary.

A direct consequence of theorem 4.1 is the following:

THEOREM 6.1. Let $X_n \to [\mu]$ in Thurston's boundary $\mathcal{PL}(S)$ for Teich(S). Then for any limit $M \in \partial B_Y$ of $\{Q(X_n, Y)\}$, we have $|\mu| \subset \mathcal{E}(M)$.

Proof: In [**Th5**], Thurston constructs measured laminations μ_n so that $\mu_n \to \mu$ in $\mathcal{ML}(S)$, and length_{X_n}(μ_n) $\to 0$. The theorem follows from an application of theorem 4.1.

As with maximal cusps, however, the support $|\mu|$ of the limit lamination $[\mu] \in \mathcal{PL}(S)$ is often a small piece of $\mathcal{E}(M)$. We now formulate a construction to obtain partitions $\Pi(M_n)$ of S using the limiting geometry of M_n so that $\Pi(M_n)$ converge to $\mathcal{E}(M)$ in the end-invariant topology. We remark that various such constructions are possible, requiring various levels of detail. We present a simple one.

Constructing partitions. By a theorem of Bers (see [**Bus**, Thm. 5.2.6]), there is a uniform constant B > 0 depending only on S so that any given $X \in \text{Teich}(S)$ admits a maximal partition Π all of whose elements γ satisfy

$$\operatorname{length}_{X}(\gamma) < B.$$

Consider a sequence $M_n = Q(X_n, Y)$ converging to $M \in \partial B_Y$, and consider the set $\mathcal{B}_n \subset S$ consisting of curves of length less than B on X_n . For each n, let β_n^1 denote an element of \mathcal{B}_n that minimizes the ratio

$$\frac{\operatorname{length}_{M_n}(\beta)}{\operatorname{length}_{Y}(\beta)}$$

over all elements $\beta \in \mathcal{B}_n$. Continuing inductively, let β_n^k be an element of

$$\mathcal{B}_n \cap \mathbb{S}(S - \beta_n^1 \sqcup \ldots \sqcup \beta_n^{k-1})$$

that minimizes the above ratio.

Let k_0 denote the maximal k for which the ratio

$$\frac{\operatorname{length}_{M_n}(\beta_n^k)}{\operatorname{length}_{Y}(\beta_n^k)} \to 0$$

and let

$$\Pi(M_n) = \beta_n^1 \sqcup \ldots \sqcup \beta_n^{k_0}.$$

Then we have the following.

THEOREM 6.2. Let $X_n \to \infty$ in Teich(S) determine quasi-Fuchsian manifolds $M_n = Q(X_n, Y) \to M$ in ∂B_Y . Then the partitions $\Pi(M_n)$ converge to $\mathcal{E}(M)$ in the end-invariant topology.

Proof: Consider a Hausdorff limit λ_H of $\Pi(M_n)$. If $\alpha \in S$ is an isolated simple closed curve in λ_H , then α lies in infinitely many $\Pi(M_n)$ so we have

$$\inf\{\operatorname{length}_{M_n}(\alpha)\} = 0.$$

Hence $\alpha \subset \mathcal{E}(M)$, by theorem 2.3.

For any other measurable sublamination $\nu \subset \lambda_H$ there is a sequence $c_n \in \Pi(M_n)$ so that length_Y $(c_n) \to \infty$ and ν lies in the Hausdorff limit of c_n after passing to a subsequence. Assume ν is realizable in M. As in the proof of theorem 5.3, there is an ϵ -nearly-straight train track $\tau \subset M$ carrying ν , and a uniform C > 1 so that τ admits enlargements τ_n minimally carrying c_n with $C\epsilon$ -nearly-straight realizations τ_n^* in M_n , for $n \gg 0$.

Given a branch b of τ_n , let $m_b(c_n)$ be the weight c_n assigns to b; i.e. the number of times c_n traverses b. Then by [**Br1**, Cor. 5.3] given any $b \in \tau$, the weight $m_b(c_n)$ grows without bound. Since the total length $\ell_{\tau_n^*}(c_n)$ of the train-path homotopic to c_n on τ_n^* satisfies

$$\operatorname{length}_{M_n}(c_n) \ge \frac{1}{K(C\epsilon)} \ell_{\tau_n^*}(c_n),$$

where $K(C\epsilon)$ is the contraction bound of equation 5.2 of §5 (see also [**Br1**, §4]), it follows that length_{M_n}(c_n) diverges.

Since, however, we have

$$\operatorname{length}_{M_n}(c_n) \leq 2\operatorname{length}_{X_n}(c_n),$$

by [**Bers2**, Thm. 3] or [**Mc1**, Prop. 6.4], it follows that $\text{length}_{M_n}(c_n) < 2B$, contradicting the divergence of $\text{length}_{M_n}(c_n)$. Thus ν is non-realizable, and therefore ν lies in $\mathcal{E}(M)$.

Convergence to the boundary in $\overline{B_Y}$. We unify these two perspectives on $\mathcal{E}(M)$ as follows. Given $M \in \partial B_Y$, the conformal boundary $\partial M - Y$ is a (possibly empty) union X of hyperbolic surfaces. Given any sequence $M_n \in \overline{B_Y}$ converging to M, let $X_n = \partial M_n - Y$. We construct partitions $\Pi(M_n)$ of X_n , exactly as above: Choose pairwise disjoint curves $\beta_n^1, \ldots, \beta_n^{k_0}$ from the set $\mathcal{B}_n \subset \mathcal{S}(X_n)$ of curves of length less than B on X_n so that each β_n^k minimizes the ratio

$$\frac{\operatorname{length}_{M_n}(\beta)}{\operatorname{length}_Y(\beta)}$$

over all $\beta \in \mathcal{B}_n \cap \mathcal{S}(X_n - \beta_n^1 \sqcup \ldots \sqcup \beta_n^{k-1})$ and so that we have

$$\frac{\operatorname{length}_{M_n}(\beta_n^{k_0})}{\operatorname{length}_{\mathbf{V}}(\beta_n^{k_0})} \to 0.$$

Then the resulting union $\mathcal{E}(M_n) \sqcup \Pi(M_n)$ is a geodesic lamination on S.

COROLLARY 6.3. The laminations $\mathcal{E}(M_n) \sqcup \Pi(M_n)$ converge to $\mathcal{E}(M)$ in the end-invariant topology.

Proof: Pass to a subsequence so that $\mathcal{E}(M_n) \sqcup \Pi(M_n)$ converges to λ_H in the Hausdorff topology. Then for any connected measurable sub-lamination $\nu \subset \lambda_H$, there is a further subsequence so that ν lies either in the Hausdorff limit of the partition $\Pi(M_n)$ or the laminations $\mathcal{E}(M_n)$. It follows from theorems 2.3 and the proof of theorem 6.2 that ν lies in $\mathcal{E}(M)$.

16

7. The failure of the Hausdorff topology to predict the end-invariant

In this section we address the questions of whether the \mathcal{E} can have a continuous inverse in the end-invariant topology, and whether limiting values of \mathcal{E} give a complete description of the end-invariant.

The inverse \mathcal{E}^{-1} is known to be well defined on points $|\mu|$ of $\mathcal{PL}(S)/|.|$ for which $|\mu|$ is a collection of simple closed curves; each M for which $\mathcal{E}(M) = |\mu|$ is quasi-isometrically unique (M is a geometrically finite cusp).⁴ In the end-invariant topology, there are abundant discontinuities of \mathcal{E}^{-1} on this set arising from approximation by maximal cusps. For example, given a single simple closed curve $\gamma \in S$ and an M for which $\mathcal{E}(M) = \gamma$, there are maximal cusps $M(C_n)$ converging to M by the main result of [**Mc2**]. By theorem 5.3 any Hausdorff limit of C_n has γ as its unique measurable sub-lamination. In the end-invariant topology, however, any measurable lamination λ containing γ is a limit of C_n , and when dim_{\mathbb{C}}(Teich(S)) > 1 there are infinitely many such λ . In this case, then, γ is necessarily a point of discontinuity for \mathcal{E}^{-1} in the end-invariant topology.

In the setting of convergent maximal cusps $M(C_n) \to M$, where $\mathcal{E}(M(C_n))$ cannot be enlarged, it is natural to ask whether the maximal measurable sublamination ν of any Hausdorff limit of $\{C_n\}$ gives a complete picture of the endinvariant $\mathcal{E}(M)$. If C_n converges in the Hausdorff topology to a lamination that does not relatively fill (such examples are easy to arrange), lemma 3.3 shows that at the very least one must enlarge ν to the lamination $\hat{\nu}$ (by adding any missing curves in its implicit partition) to hope for the equality $\hat{\nu} = \mathcal{E}(M)$.

We conclude this paper with an example that shows that adding the implicit partition for ν is not in general enough to obtain this equality: new parabolics can arise that are neither contained nor implicit in ν .

THEOREM 7.1. IMPLICIT CUSPS Let $\dim_{\mathbb{C}}(\operatorname{Teich}(S)) > 1$, and let γ lie in S. Then for any α in $S(S-\gamma)$, there are maximal partitions $C_n \to \lambda_H$ in the Hausdorff topology and associated maximal cusps $M(C_n) \to M$ in ∂B_Y for which:

Proof: By the assumption that $\dim_{\mathbb{C}}(\operatorname{Teich}(S)) > 1$, there are infinitely many α satisfying the hypotheses.

We construct the sequence of maximal partitions C_n as follows. Let $\varphi \in Mod(S)$ be a mapping class so that

- 1. φ fixes α ,
- 2. φ restricts to a pseudo-Anosov mapping class on the closure of the component T of $S-\alpha$ containing γ
- 3. φ is the identity otherwise

(see [**FLP**, Exp. 9], [**Th3**], [**Br2**]). Let $\tau_{\gamma} \in \text{Mod}(S)$ be a Dehn twist about the curve γ . Let P_0 be a maximal partition, all of whose elements cross α . Let $\varphi^k(P_0) = P_k$. By assigning weight 1 to each element of P_k we obtain a sequence $\{[P_k]\} \subset \mathcal{PL}(S)$, that converges to a limit $[\mu_{\infty}]$ after passing to a subsequence.

Let $\mu^u \in \mathcal{ML}(S)$ denote the unstable lamination for the pseudo-Anosov restriction of φ to T; i.e. μ^u is the unique measured lamination for which $\varphi(\mu^u) = c\mu^u$

^{1.} γ is the maximal measurable sub-lamination of λ_H , and

^{2.} α lies in $\mathcal{E}(M)$.

⁴Y. Minsky recently announced \mathcal{E}^{-1} is well defined on laminations of bounded type [Min4].

with c > 1. Noting that

$$i(\mu^u, \varphi^k(P_0)) = i(\varphi^{-k}(\mu^u), P_0) = \frac{i(\mu^u, P_0)}{c^k},$$

it follows from continuity of i(.,.) (see [Bon1, Prop. 4.5]) that $i(\mu^u, \mu_\infty) = 0$.

Let λ be a Hausdorff limit of a subsequence of P_k . If α separates S, then let $T' = \overline{S-T}$. Then $\varphi(\beta) = \beta$ for each $\beta \in \mathcal{S}(T')$, so $i(\beta, P_k)$ does not depend on k (and is therefore bounded). Thus, λ contains no measurable sub-lamination η for which $\eta = |\mu'|$ and $\mu' \in \mathcal{ML}(T')$.

Hence, either $[\mu_{\infty}] = [\mu^u]$ or α is a sub-lamination of μ_{∞} . We wish to avoid this possibility, so we adjust each P_k by the power $m_k \in \mathbb{Z}$ of an α -Dehn twist τ_{α} for which the total length of

$$P'_k = \tau^{m_k}_\alpha(P_k)$$

on Y is minimized. It follows that the curves in P'_k and α realized as geodesics on Y intersect with angle uniformly bounded away from 0.

For any $\beta \in S(S - \alpha)$ we have $i(\beta, P'_k) = i(\beta, P_k)$, so the above intersection number arguments apply to P'_k : after passing to perhaps further subsequences, we have $[P'_k] \to [\mu^u]$ in $\mathcal{PL}(S)$ and P'_k converge as geodesic laminations to a Hausdorff limit λ' with maximal measurable sublamination $|\mu^u|$ (see figure 3).

Figure 3. An implicit cusp: $\mathcal{E}(M) = \gamma \sqcup \alpha$, but α does not lie in λ_H .

Now consider the action of the Dehn twist τ_{γ} on λ' . Since $i(\mu^u, \gamma) > 0$ and every leaf of $|\mu^u|$ is dense in $|\mu^u|$, every leaf of $|\mu^u|$ crosses γ infinitely in each direction. Each leaf of λ' is either a leaf of $|\mu^u|$ or asymptotic to leaves of $|\mu^u|$ in each direction, so every leaf of λ' crosses γ infinitely often in each direction. The Hausdorff limit λ_H of $\{\tau_{\gamma}^n(\lambda')\}_{n=1}^{\infty}$ consists of γ together with a finite number of pairwise disjoint bi-infinite geodesics that spiral into γ from either side (figure 3).

Thus, γ is the only measurable sub-lamination of λ_H , and λ_H crosses the simple closed curve α transversely (again, as geodesics on Y). Diagonalizing, for each n we

choose k_n so that $\tau_{\gamma}^n(P'_{k_n})$ converges to λ_H in the Hausdorff topology as $n \to \infty$. Let

$$C_n = \tau_\gamma^n (P'_{k_n})$$

We claim that by enlarging k_n further we may guarantee that the maximal cusps $M_n = M(C_n) \in \partial B_Y$ satisfy

(7.3)
$$\underline{\operatorname{length}}_{M_n}(\alpha) < \frac{1}{n}.$$

To see this, note that if we let k tend to ∞ with n fixed, the maximal cusps $\{M(\tau_{\gamma}^{n}(P'_{k}))\}_{k=1}^{\infty}$ converge up to subsequence to a limit $M_{\infty}(n) \in \partial B_{Y}$ with the property that

$$|\tau_{\gamma}^{n}(\mu^{u})| \subset \mathcal{E}(M_{\infty}(n)).$$

Since for each *n* the implicit partition $\widehat{P}(|\tau_{\gamma}^{n}(\mu^{u})|)$ of $|\tau_{\gamma}^{n}(\mu^{u})|$ is the single simple closed curve α , lemma 3.3 guarantees that α lies in $\mathcal{E}(M_{\infty}(n))$. Thus, α is parabolic in $M_{\infty}(n)$, so the claim (inequality 7.3) follows by continuity of length (theorem 2.3).

Applying theorem 2.3 once again, we have that α is parabolic in M.

A concluding remark: The reader familiar with geometric or *Gromov-Hausdorff* convergence of hyperbolic manifolds will recognize the similarity of the above example to the main example of [**KT**, §3] and others like it (cf. [**Br2**]). In the case above, the geometric limit M_G covered by M has a *degenerate end* that forces an implicit cusp at α , as well as a rank-two cusp with core-curve γ . The parabolic α lifts to M while the cusp at γ provides an obstruction to lifting the degenerate end. It would seem that a complete understanding of how values of \mathcal{E} vary on Bers boundary depends, like many issues in the deformation theory, on developing a better understanding of the full spectrum of possible geometric limits of sequences $\{M_n\} \subset \partial B_Y$.

References

- [Ab] W. Abikoff. Degenerating families of Riemann surfaces. Annals of Math. 105(1977), 29–44.
- [AC] J. Anderson and R. Canary. Algebraic limits of Kleinian groups which rearrange the pages of a book. *Invent. Math.* 126(1996), 205–214.
- [Bers1] L. Bers. Simultaneous uniformization. Bull. AMS 66(1960), 94–97.
- [Bers2] L. Bers. On boundaries of Teichmüller spaces and on kleinian groups: I. Annals of Math. **91**(1970), 570–600.
- [Bon1] F. Bonahon. Bouts des variétés hyperboliques de dimension 3. Annals of Math. 124(1986), 71–158.
- [Bon2] F. Bonahon. The geometry of Teichmüller space via geodesic currents. Invent. math. 92(1988), 139–162.
- [Bon3] F. Bonahon. Shearing hyperbolic surfaces, bending pleated surfaces, and Thurston's symplectic form. Ann. Fac. Sci. Toulouse Math. 5(1996), 233–297.
- [Bon4] F. Bonahon. Geodesic laminations with transverse Hölder distributions. Ann. scient. Éc. Norm. Sup. 30(1997), 205–240.
- [Br1] J. Brock. Continuity of Thurston's length function. To appear, Geom. & Funct. Anal.
- [Br2] J. Brock. Iteration of mapping classes and limits of hyperbolic 3-manifolds. Submitted to Invent. Math.
- [Bus] P. Buser. Geometry and Spectra of Compact Riemann Surfaces. Birkhauser Boston, 1992.

JEFFREY F. BROCK

- [CEG] R. D. Canary, D. B. A. Epstein, and P. Green. Notes on notes of Thurston. In Analytical and Geometric Aspects of Hyperbolic Space, pages 3–92. Cambridge University Press, 1987.
- [FLP] A. Fathi, F. Laudenbach, and V. Poénaru. Travaux de Thurston sur les surfaces, volume 66-67. Astérisque, 1979.
- [FI] W. Floyd. Group completions and limit sets of Kleinian groups. Invent. Math. 57(1980), 205–218.
- [IT] Y. Imayoshi and M. Taniguchi. An Introduction to Teichmüller Spaces. Springer-Verlag, 1992.
- [Ker] S. Kerckhoff. The Nielsen realization problem. Ann. of Math. 177(1983), 235–265.
- [KT] S. Kerckhoff and W. Thurston. Non-continuity of the action of the modular group at Bers' boundary of Teichmüller space. *Invent. math.* 100(1990), 25–48.
- [Mc1] C. McMullen. Iteration on Teichmüller space. Invent. math. 99(1990), 425–454.
- [Mc2] C. McMullen. Cusps are dense. Annals of Math. 133(1991), 217–247.
- [Mc3] C. McMullen. Rational maps and Kleinian groups. In Proceedings of the International Congress of Mathematicians Kyoto 1990, pages 889–900. Springer-Verlag, 1991.
- [Mc4] C. McMullen. The classification of conformal dynamical systems. In Current Developments in Mathematics, 1995, pages 323–360. International Press, 1995.
- [Mc5] C. McMullen. Renormalization and 3-Manifolds Which Fiber Over the Circle. Annals of Math. Studies 142, Princeton University Press, 1996.
- [Mc6] C. McMullen. Hausdorff dimension and conformal dynamics I: Strong convergence of Kleinian groups. J. Diff. Geom. 51(1999), 471–515.
- [Min1] Y. Minsky. Harmonic maps into hyperbolic 3-manifolds. Trans. AMS 332(1992), 539– 588.
- [Min2] Y. Minsky. On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds. J. of the AMS 2(1994), 539–588.
- [Min3] Y. Minsky. The classification of punctured torus groups. Annals of Math. 149(1999), 559–626.
- [Min4] Y. Minsky. Short geodesics and end-invariants. Preprint.
- [Ohs1] K. Ohshika. Ending laminations and boundaries for deformation spaces of Kleinian groups. J. London Math. Soc. 42(1990), 111–121.
- [Ohs2] K. Ohshika. Divergent sequences of Kleinian groups. Geometry and Topology Monographs Volume 1: The Epstein Birthday Schrift, paper no. 21 1(1998), 419–450.
- [Otal] J. P. Otal. Le théorème d'hyperbolisation pour les variétés fibrées de dimension trois. Astérisque, 1996.
- [Th1] W. P. Thurston. Geometry and Topology of Three-Manifolds. Princeton lecture notes, 1979.
- [Th2] W. P. Thurston. Hyperbolic structures on 3-manifolds I: Deformations of acylindrical manifolds. Annals of Math. 124(1986), 203–246.
- [Th3] W. P. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. AMS 19(1988), 417–432.
- [Th4] W. P. Thurston. Hyperbolic structures on 3-manifolds II: Surface groups and 3-manifolds which fiber over the circle. *Preprint*, 1986.
- [Th5] W. P. Thurston. Minimal stretch maps between hyperbolic surfaces. Preprint, 1986.

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CA 94305 *E-mail address:* brock@math.Stanford.EDU