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Abstract. We study two boundaries for the Teichmüller space of a sur-
face Teich(S) due to Bers and Thurston. Each point in Bers’ boundary is
a hyperbolic 3-manifold with an associated geodesic lamination on S, its end-
invariant, while each point in Thurston’s is a measured geodesic lamination,
up to scale. We show that when dimC(Teich(S)) > 1 the end-invariant is not a
continuous map to Thurston’s boundary modulo forgetting the measure with
the quotient topology. We recover continuity by allowing as limits maximal
measurable sub-laminations of Hausdorff limits and enlargements thereof.
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1. Introduction

In celebrated boundaries for Teichmüller space due to Bers and Thurston, ge-
odesic laminations arise in natural ways:

• A point M in Bers’ boundary, a hyperbolic 3-manifold, has an associated
geodesic lamination E(M) that has been pinched. The lamination E(M) is
an invariant of the quasi-isometry class [M ] of M .

• A point [µ] in Thurston’s boundary, a measured lamination µ up to scale,
records the asymptotic stretching of divergent hyperbolic metrics Xi → [µ].
Its support |µ| is a geodesic lamination.
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Thurston’s ending lamination conjecture predicts that the map [M ] 7→ E(M) from
quasi-isometry classes in Bers’ boundary to the quotient of Thurston’s boundary by
forgetting the measure is an injection. In other words, if one knows the lamination
E(M), one knows the manifold M up to quasi-isometry. The map E gives a bijection
between dense subsets: the dense family of maximal cusps M (a maximal family of
simple closed curves is pinched in M) is mapped by E to the dense set of maximal
partitions of S by simple closed curves (which are analogous to rational points
of S1). Thus, given Thurston’s conjecture, it is natural to ask whether E is a
homeomorphism. Or, as a starting point, how do sequences E(Mn) behave under
limits Mn → M?

In this paper we show E has the following continuity properties:
I. E is strictly lower-semi-continuous in the quotient topologies,

II. E is continuous in a new end-invariant topology, based on the Hausdorff
topology, which predicts new information about its limiting values, and

III. E cannot have a continuous inverse in the end-invariant topology, nor do
Hausdorff limits completely encode the limiting end-invariant in general.

To state our results more precisely, we review terminology.
Let S be an oriented surface, closed for simplicity, and let Q(X, Y ) denote the

quasi-Fuchsian Bers simultaneous uniformization of the pair of surfaces (X, Y ) ∈
Teich(S)× Teich(S) (where S is S with the reverse orientation). Such uniformiza-
tions sit in the closed subset AH(S) of the representation variety

V(S) = Hom(π1(S), PSL2(C ))/conjugation

consisting of representations that are discrete and faithful.
The map Q : Teich(S) × Teich(S) → AH(S) is a homeomorphism onto its

image, the quasi-Fuchsian space QF (S) ⊂ AH(S). Fixing Y in the second factor
gives the Bers slice BY

∼= Teich(S) of QF (S). Bers proved BY has compact closure
in AH(S), giving rise to a Bers compactification BY and a Bers boundary ∂BY .

The measured laminations ML(S) on S are a natural completion of the isotopy
classes of essential simple closed curves on S with positive real weights. Projec-
tivizing, one obtains a sphere PL(S) = ML(S) − {0}/R+ of projective measured
laminations with which Thurston compactifies Teich(S). On any hyperbolic surface
X , each measured lamination µ determines a geodesic lamination, a closed subset
of X foliated by geodesics, as its support |µ|.

Representations ρ ∈ AH(S) are in bijection with marked hyperbolic 3-manifolds
(f : S → M) up to homotopy, where M = H 3/ρ(π1(S)) and f∗ = ρ. Thurston asso-
ciates an end-invariant E(M) to each M ∈ ∂BY , namely, the geodesic lamination
consisting of all non-peripheral parabolics and laminations on which any measure
has ‘length-zero’ in M (see §2). Since any such geodesic lamination is measurable
(it arises in the quotient of Thurston’s boundary by forgetting the measure), E gives
a mapping

E : ∂BY → PL(S)/|.|.
The lamination E(M) is an invariant of the marked quasi-isometry class [M ] of M .
Letting ∂BY /qi denote the quotient of ∂BY by marking preserving quasi-isometry,
E descends to a mapping E : ∂BY /qi → PL(S)/|.| which we also denote by E.

Our first theorem is the following.

Theorem 1.1. The mapping E is strictly lower-semi-continuous in the quotient
topologies on domain and range.
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Here, lower-semi-continuity means:

for [Mn] → [M ] any limit E∞ of {E([Mn])} satisfies E∞ ⊂ E([M ]).

Strict lower-semi-continuity means there exists Mn → M for which the final con-
tainment is proper (see theorem 4.1).

Note that maximal families of pairwise disjoint, essential simple closed curves
are dense in PL(S)/|.|. These are the images under E of maximal cusps: 3-manifolds
M ∈ ∂BY for which the curves in such a maximal family are parabolic. The
invariant E(M) determines the maximal cusp M up to isometry. The question of
the continuity properties of E is then motivated by

Theorem 1.2 (McMullen). Maximal cusps are dense in ∂BY .

Theorem 1.1 contrasts the behavior of maximal families as measures and as parabol-
ics in the passage to limits.

Before recovering continuity, we give a characterization of the laminations that
can arise in the image of E. A measurable lamination ν ∈ PL(S)/|.| fills a compact
surface S if for any essential simple closed curve α on S that is not parallel to ∂S,
α intersects ν. Decompose ν into the union ν = P t E of its simple closed curve
components P and its infinite minimal components E for which every leaf is infinite
and dense in its component. We say ν relatively fills S if any component ν′ of E fills
the subsurface of S − P that it meets. Let EL(S) be the quotient of the quotient
PL(S)/|.| obtained assigning to ν ∈ PL(S)/|.| the lamination ν̂ ∈ PL(S)/|.| given
by by adding to ν the minimal set of simple closed curves required to obtain a
lamination that relatively fills S.

Compactness theorems for Thurston’s pleated surfaces show that E takes values
in EL(S) (§3). Given ν ∈ EL(S), we may use theorem 1.1 to find an M ∈ ∂BY for
which E(M) = ν: pinching P and families of simple closed curves approximating
E to cusps, we extract a limit M with E(M) = ν. This gives a new proof1 of:

Theorem 1.3. The mapping E is a surjection onto EL(S).

We introduce a new topology on EL(S): the end-invariant topology is the topol-
ogy of convergence for which

(*) νn → ν if for any subsequence νnj converging to λH in the Hausdorff topol-
ogy, ν contains the maximal measurable sub-lamination η of λH .

(The end-invariant topology, like the quotient topologies, is non-Hausdorff). Then
we obtain the following strengthening of theorem 1.1 (theorem 5.3):

Theorem 1.4. The mapping E is continuous from the quotient topology on
∂BY /qi to EL(S) with the end-invariant topology.

In general, given a convergent sequence Mn → M in ∂BY , the end-invariants
E(Mn) need not converge in the Hausdorff topology. Theorem 1.4 forces the mea-
surable sub-laminations of any pair Hausdorff limits of E(Mn) into alignment.

The main techniques in this paper are developed in [Br1] where we prove a
bi-continuity theorem for the lengths of measured laminations realized by pleated
surfaces in hyperbolic 3-manifolds. The end invariant E(M) is the zero-set of this
length function when M is fixed.

These questions relate to the following

1K. Ohshika gave a proof of surjectivity of E in [Ohs1] but his proof assumed a special case
of the main result of [Br1]. This special case was claimed by Thurston but had not appeared.
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Conjecture 1.5 (Thurston). The map E : ∂BY /qi → EL(S) is a bijection.

One may speculate as to whether E gives a homeomorphism in any reasonable
topology on EL(S). Theorems 1.2 and 1.4 show E cannot have a continuous inverse
in the end-invariant topology (§7).

Convergence in a Bers compactification. The possibility of pinching in the
conformal boundary of M means the end-invariant topology must allow for the
constant sequence to enlarge in the limit. We record this extra information by
considering maximal families of disjoint simple closed curves on ∂M − Y whose
lengths in M and on Y are in small ratio. Indeed, given Mn → M in the Bers
compactification BY there is a family Π(Mn) of such curves so that E(Mn)tΠ(Mn)
is a geodesic lamination and

lim
n→∞ max

γ∈Π(Mn)

lengthMn
(γ)

lengthY (γ)
= 0.

Then we prove the following (see corollary 6.3):

Theorem 1.6. The laminations E(Mn)tΠ(Mn) converge to E(M) in the end-
invariant topology.

In the case when each E(Mn) is maximal (a maximal partition, say) it is reason-
able to ask whether given the maximal measurable sub-lamination η of the Haus-
dorff limit λH of E(Mn), the lamination η̂ is the full end-invariant E(M). Though
the answer is yes in many cases, we conclude this paper with a negative answer to
this question in general (see theorem 7.1):

Theorem 1.7. Implicit Cusps Let γ be an essential simple closed curve in
S. Then for any other essential simple closed curve α in S − γ, there are maxi-
mal partitions Cn → λH in the Hausdorff topology and associated maximal cusps
M(Cn) → M in ∂BY for which:

1. γ is the maximal measurable sub-lamination of λH , and
2. α lies in E(M).

The curve α is an “implicit cusp” forced by 3-dimensional hyperbolic geometry
that, somewhat surprisingly, goes undetected by the Hausdorff topology. The ex-
ample producing theorem 1.7 reveals a new geometric phenomenon that complicates
the relationship between hyperbolic surfaces and the 3-manifolds they parameterize.

History and references. The density of maximal cusps in Bers’ boundary is
proven by McMullen in [Mc2]. Whether or not appropriate quotients of Bers’ and
Thurston’s boundaries are homeomorphic is asked by McMullen in [Mc3]. For
informative discussions of the end-invariant see [Mc4] and [Min2].

In general, we allow S to be compact with nonempty boundary. Indeed, when
dimC (Teich(S)) = 1, Y. Minsky has shown (see [Min3]) that that E is a homeo-
morphism from ∂BY to PL(S) (passing to quotients is redundant as the support
|µ| of any measured lamination µ ∈ ML(S) admits a unique transverse measure
up to scale, and Minsky proves that E(M) determines M up to isometry). Note
that in this setting E(M) is always connected, while when dimC (Teich(S)) > 1, the
invariant E(M) can be disconnected.

Thurston introduces pleated surfaces and lengths of laminations in [Th1],
[Th2], and [Th4]. Various versions of Thurston’s length function are discussed
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in [Th4], [Bon3] and [Ohs2]; we prove a general bi-continuity theorem (see theo-
rem 2.3) in [Br1] where the key lemmas on nearly-straight train tracks employed
in the proof of theorem 1.4 ([Br1, Lem. 5.2, Cor. 5.3]) also appear.

We have chosen to work in the Bers slice to avoid certain technicalities that
arise in more general deformation spaces of hyperbolic 3-manifolds. We remark
that work of J. Anderson and R. Canary [AC] reveals a different type of possible
discontinuity in the analogous end-invariant mapping for general deformation spaces
(see [Min3, §12]). We plan to merge these two perspectives in a sequel.

Acknowledgements. I would like to thank Curt McMullen for posing this ques-
tion and for his helpful suggestions, as well as Yair Minsky and Dick Canary for
many discussions concerning this work. I would also like to thank the referees for
many useful comments.

2. Preliminaries

Let S be an oriented compact topological surface of negative Euler character-
istic. We allow S to have non-empty boundary; let int(S) = S − ∂S denote its
interior.

Teich(S). The Teichmüller space Teich(S) is the space of finite-area hyperbolic
surfaces X equipped with homeomorphisms f : int(S) → X such that

(f : int(S) → X) ∼ (g : int(S) → Y )

if there is an isometry φ : X → Y so that φ ◦ f ' g.
The topology on Teich(S) is induced by the natural distance d(X, Y ) obtained

by taking the infimum K over all k for which there is a k-bi-Lipschitz diffeomor-
phism φ homotopic to g ◦ f−1 and setting d(X, Y ) = log(K). The Teichmüller
space is homeomorphic to an open ball and carries a natural complex structure of
dimension dimC (Teich(S)) = 3g − 3 + n, where S has genus g with n boundary
components.

AH(S). Let D(S) denote the space of discrete faithful representations ρ : π1(S) →
Isom+(H 3 ) so that ρ(γ) is parabolic for each peripheral element γ ∈ π1(S) (i.e. γ
is boundary-parallel), with the compact-open topology, or the topology of algebraic
convergence. Let

AH(S) = D(S)/Isom+(H 3 )
be its quotient by conjugation.

By a theorem of Thurston and Bonahon [Th1, Ch. 9] [Bon1] M = H 3/ρ(π1(S))
is a complete hyperbolic manifold homeomorphic to int(S)×R. The complete hyper-
bolic manifold M is prolonged to its Kleinian manifold M by adding its conformal
boundary ∂M : namely, the quotient of the domain Ω(M) ⊂ Ĉ where ρ(π1(S)) acts
properly discontinuously.

The set of hyperbolic 3-manifolds M marked by homotopy equivalences (f : S →
M) up to marking-preserving isometry is in bijection with conjugacy classes of rep-
resentations ρ ∈ AH(S) via the association f 7→ f∗. Thus we will often speak of
AH(S) as a space of marked hyperbolic manifolds and write M ∈ AH(S), assuming
an implicit marking homotopy equivalence (f : S → M).

One may formulate algebraic convergence in this context: {(fn : S → Mn)}
converges to (f : S → M) if for any compact set K ⊂ M there are smooth, marking-
preserving homotopy equivalences qn : M → Mn that converge to a local isometry
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on K in the C∞ topology (see [Mc5, §3.1]; we refer the reader to [Mc5], [Th1],
or [Br2] for details about hyperbolic 3-manifolds and Kleinian groups).

QF (S). By a theorem of Bers [Bers1] there is unique quasi-Fuchsian manifold
Q(X, Y ) ∈ AH(S) interpolating between any pair of hyperbolic surfaces (X, Y ) ∈
Teich(S)×Teich(S) in its conformal boundary. Given Y ∈ Teich(S), the Bers slice

BY = {Q(X, Y ) : X ∈ Teich(S)}
is an embedded copy of Teich(S) in AH(S). The embedding depends on Y , but for
any Y the slice BY is precompact in AH(S). One obtains a Bers compactification
BY by forming the closure, and an associated Bers boundary for Teichmüller space
as its boundary ∂BY (see also [KT], [Mc5], or [Bers2]).

ML(S). Let S be the set of isotopy classes of essential non-peripheral simple
closed curves on S. The geometric intersection number

i : S× S→ Z≥0

counts the minimal number i(α, β) of intersections of curves in distinct isotopy
classes (α, β) in S× S and takes the value zero on the diagonal.

Attaching a positive real weight to each isotopy class, let

ι : R+ × S→ R
S

be defined by
〈ι(tγ)〉α = ti(α, γ).

Then we define the measured laminations ML(S) = ι(R+ × S) by taking the clo-
sure of the image (note that weighted simple closed curves are naturally dense in
ML(S)). The intersection number extends to a symmetric continuous function
i : ML(S) × ML(S) → R≥0 so that i(s α, t β) = s · t(i(α, β)) for α, β ∈ S and
s, t ∈ R≥0 [Bon1, Prop. 4.5].

The measured lamination space ML(S) is a cell of the same real dimension as
Teich(S). The projective measured laminations PL(S) = ML(S) − {0}/R+ form
a sphere of one dimension lower. The sphere PL(S) is Thurston’s boundary for
Teichmüller space - the topology on Thurston’s compactification Teich(S)tPL(S)
is determined by the conditions that Teich(S) is open in Teich(S) t PL(S) and
Xn → [µ] ∈ PL(S) if and only if

lengthXn
(α)

lengthXn
(β)

→ i(µ, α)
i(µ, β)

for any pair α and β in S for which i(µ, β) 6= 0. (For more on measured and projec-
tive laminations, and Thurston’s compactification see [FLP], [Th1], or [Bon2]).

Subsurfaces. A subsurface is a compact 2-submanifold of S. An essential sub-
surface T ⊂ S is a subsurface so that each curve in ∂T is homotopically essential.
Given an essential subsurface T ⊂ S, let S(T ) ⊂ S be isotopy classes of simple
closed curves in S isotopic into T that are non-peripheral in T . Then ML(T ) is
naturally a closed subspace of ML(S).

GL(S). Given X ∈ Teich(S), a geodesic lamination λ on X is a closed subset of
X that admits a decomposition into complete simple geodesics called leaves of λ.
The set of geodesic laminations GL(X) on X is a compact subspace of the space of
closed subsets Cl(X) in the Hausdorff topology.
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Via a natural circle at infinity for S, geodesic laminations are canonically asso-
ciated to the surface S and can be realized geodesically on any X ∈ Teich(S) via its
implicit marking (see [Bon2], [Fl], or [CEG, §4.1]). Thus we will speak of a point
λ ∈ GL(S), which determines a geodesic lamination on any particular hyperbolic
surface X ∈ Teich(S). Given λ ⊂ GL(S), let S(λ) ⊂ S be the essential subsurface
obtained by realizing λ on (f : S → X) ∈ Teich(S) and pulling back by f−1 the
smallest subsurface with geodesic boundary containing λ.

A measured lamination µ ∈ ML(S) determines a transverse measure on a
geodesic lamination |µ|. The geodesic lamination |µ| is called the support of µ. A
geodesic lamination ν is measurable if there is some µ ∈ ML(S) for which ν = |µ|;
ν admits a transverse measure of full support.

Given λ, ν ∈ GL(S), the notation λ ⊂ ν will mean that λ is a sub-lamination
of ν, while the notation λ ∩ ν will refer to any common sublamination of λ and ν
together with the set of transverse intersections of leaves of λ and ν, well defined
on any hyperbolic surface X ∈ Teich(S).

Pleated surfaces. Let (f : S → M) ∈ AH(S) and let λ ∈ GL(S) be a geodesic
lamination. We say λ is realizable in M if there is a hyperbolic surface X ∈ Teich(S),
and a path-isometry2 g : X → M , compatible with markings on X and M , so that
g|λ is a local isometry. If g is totally geodesic on the complement of some geodesic
lamination λ′ containing λ, the triple (g, X, M) is called a pleated surface in M ,
and we say the pleated surface realizes λ. A measured lamination µ ∈ ML(S) is
realizable in M if its support |µ| is realizable. Any realizable lamination can be
realized by a pleated surface.

Let PS(f) denote the set of all pairs (g, X), where (φ : S → X) ∈ Teich(S),
and g : X → M is a pleated surface with f ' g ◦ φ. Let PSnp(f) ⊂ PS(f) be the
subset for which f∗(γ) is parabolic only if γ is a peripheral element of π1(S).

We topologize PS(f) by the Teichmüller distance on the underlying surfaces
and the topology of uniform convergence on compact sets on the pleated mappings.
In other words, (gn, Xn) → (g, X) if there are marking-preserving bi-Lipschitz
diffeomorphisms qn : X → Xn with bi-Lipschitz constant tending to 1 so that the
composition gn ◦ qn converges uniformly on compact subsets to g. Then we have
the following compactness result due to Thurston (see [CEG, 5.2.18]):

Theorem 2.1 (Thurston). Pleated Surfaces Compact Let (f : S → M) ∈
AH(S), and let K ⊂ M be a compact subset. Then the set of all (g, X) ∈ PSnp(f)
with the property that g(X) ∩K 6= ? is compact.

Also relevant is the following theorem which we restate in a form useful to us.

Theorem 2.2 (Thurston). Limits Realized Let {(gn, Xn)} ⊂ PSnp(f) con-
verge to (g, X) and let (gn, Xn) realize convergent measured laminations µn → µ.
Then (g, X) realizes µ.

(The theorem is a direct consequence of [CEG, 5.3.2]).

Lengths of laminations. Given X ∈ Teich(S), any isotopy class γ ∈ S has a
well defined length by taking the arclength `X(γ∗) of its geodesic representative γ∗.
By a theorem of Thurston and Bonahon (see [Th4] [Bon1, Prop. 4.5]) there is a
unique continuous function

length: Teich(S)×ML(S) → R

2The map g sends geodesic arcs in X to rectifiable arcs in M of the same length.



8 JEFFREY F. BROCK

that restricts to R+ × S by

lengthX(tγ) = t`X(γ∗).

LetR ⊂ AH(S)×ML(S) denote the set of pairs (M, µ) such that µ is realizable
in M . We define the length function

length: R→ R

by setting lengthM (µ) = lengthX(µ) where g : X → M is any pleated surface
realizing |µ| (the length in M does not depend on the realizing pleated surface; see
[Th4] [Bon4]).

When µ is not realizable in M , proper sub-laminations may still be realizable.
Define the projection map

RM : ML(S) →ML(S)

to be the identity on laminations realizable in M and to associate to any non-
realizable lamination µ the maximal sub-lamination RM (µ) of µ that is realizable
in M .

Then we have the following from [Br1]:

Theorem 2.3. Length Continuous The function

length: AH(S)×ML(S) → R

given by (M, µ) → lengthM (RM (µ)) is continuous.

In particular, we have the following corollary:

Corollary 2.4. Let pairs {(Mn, µn)} converge to (M, µ) in AH(S)×ML(S)
so that length

Mn
(µn) → 0. Then RM (µ) = 0.

In other words, if µ lies in ML(S)+, the non-zero elements of ML(S), and
length

M
(µ) = 0, then each component of µ is non-realizable in M .

The end invariant E(M). We make the following definition.

Definition 2.5. Let M ∈ ∂BY be a point in a Bers’ boundary. Then its end
invariant E(M) is the union of all connected geodesic laminations λ such that for
some µ ∈ML(S)+ we have,

λ = |µ| and length
M

(µ) = 0.

By a theorem of Thurston and Bonahon (the geometric tameness of M [Th1],
[Bon1]), E(M) lies in PL(S)/|.|; i.e. E(M) is itself a measurable geodesic lamina-
tion.

Notation: Throughout, the notation n � 0 will mean ‘all n sufficiently large.’
Unless otherwise stated, constants will depend only on S.

3. Surjectivity onto measurable laminations that relatively fill

In this section, we reprise implications of compactness of pleated surfaces on
the basic structure of E(M) (this theory is developed in [Th1, Ch. 9]) and go on
to give a characterization of laminations that arise in the image of E.

Decomposing laminations. A partition P of S is a collection P ⊂ S of distinct
isotopy classes of pairwise-disjoint, essential, non-peripheral, simple closed curves
on S. A maximal partition is a partition that cannot be enlarged. The partition P
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determines a collection of essential subsurfaces in its complement as the complement
of pairwise embedded open annular neighborhoods of each curve in P . Let S − P
denote their union, abusing notation.

Each measurable lamination ν (i.e. ν ∈ PL(S)/|.|) admits a decomposition

ν = P (ν) t E(ν)

where P (ν) ⊂ S is a partition, and each component of E(ν) is infinite and minimal:
each leaf of E(ν) is bi-infinite and dense in its component. A general geodesic
lamination λ decomposes into its maximal measurable sub-lamination ν ⊂ λ and a
finite collection of bi-infinite leaves each end of which is either asymptotic to ν or
to a puncture of S (see [Otal, §A]).

The measurable lamination ν fills S if for each α ∈ S, and any measure µ ∈
ML(S) with |µ| = ν we have either i(µ, α) > 0 or α is peripheral in S.

Generalizing, we make the following definition.

Definition 3.1. The measurable lamination ν relatively fills S if for each com-
ponent ν′ ⊂ E(ν), ν′ fills the subsurface component of S − P (ν) in which it lies.

We define EL(S) ⊂ PL(S)/|.| to be the subset of laminations that relatively fill
S. Each measurable ν has an implicit partition P̂ (ν): this is the minimal partition
containing P (ν) so that E(ν) t P̂ (ν) is a lamination that relatively fills S. There
is a natural projection

PL(S)/|.| → EL(S) given by ν 7→ E(ν) t P̂ (ν);

let ν̂ = E(ν) t P̂ (ν) (see figure 1).

ν ν̂

P̂ (ν)

E(ν)

Figure 1. Adding the implicit partition P̂ (ν).

In this section we prove the following:

Theorem 3.2. The map E is a surjection onto EL(S).

We first prove E is well-defined as a map to EL(S).

Lemma 3.3. For any M ∈ ∂BY , the end-invariant E(M) relatively fills S.

Proof: Let (f : S → M) be the implicit marking for M , and let E(M) = P t E
be the decomposition of E(M) into its sets of parabolics P and infinite minimal
components E. If E(M) does not relatively fill S, then for some connected sub-
lamination ν ⊂ E lying in a connected component T of S − P , there is a simple
closed curve γ ∈ S(T ) in the implicit partition for ν that is non-peripheral in T .
It follows that γ is not parabolic in M and is therefore realizable (see [Th1, §9.7],
[CEG, Thm. 5.3.11]).
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Let tncn → µ, be a sequence of weighted simple closed curves converging to
a measured lamination µ with support ν = |µ| so that i(γ, cn) = 0. There is a
sequence of pleated surfaces (gn, Xn) ∈ PSnp(f |T ) realizing γ ∪ cn. Since (gn, Xn)
all realize γ, a subsequence converges to (g, X) ∈ PSnp(f |T ) by theorem 2.1. By
theorem 2.2, the limit realizes ν, a contradiction. Thus γ either intersects ν or lies
in P , so ν relatively fills S.

(A similar argument appears in [Br2, Thm. 4.7]).

Proof: (of theorem 3.2). Let ν ∈ EL(S). Then there is a measured lamination
µ ∈ML(S) so that |µ| = ν. Let Π = P (ν), let E(ν) = ν1 t . . . t νk, and let

S −Π = S1 t . . . t Sk t T1 t . . . t Ts

denote the collection of subsurfaces of S determined up to isotopy as the comple-
ment of small pairwise embedded open annular neighborhoods of the curves in Π, so
that νj lies in GL(Sj), j = 1, . . . , k. Let µj ⊂ µ denote the measured sub-lamination
so that |µj | = νj .

For each j, let {cj,n} ⊂ S be simple closed curves in S(Sj) so that for positive
real weights tj,n we have tj,ncj,n → µj as j → ∞. Letting µΠ ⊂ µ be the measure
determined by µ on Π (i.e. |µΠ| = Π), the unions

ξn = µΠ

⋃(tk
j=1tj,ncj,n

)

are measured laminations so that ξn → µ in ML(S).
A maximal partition P of S determines Fenchel-Nielsen length and twist coor-

dinates
(lengthγ(X), twistγ(X)) ∈ RP+ × R

P

for X ∈ Teich(S), where γ ∈ P (see e.g. [IT]). Given a subset P ⊂ P , the pinching
deformation along P is the family of Riemann surfaces Xt ∈ Teich(S), t → 0,
determined by setting the coordinates

lengthγ(Xt) = tlengthγ(X)

for each γ ∈ P and leaving all other coordinates unchanged. Then the pinching
deformation along P determines a path Q(Xt, Y ) in BY that converges to a limit
M ∈ ∂BY with E(M) = P (see [Ab], [Mc6, Thm. 9.5]).

Let Mn ∈ ∂BY be obtained from the quasi-Fuchsian manifold Q(X, Y ) by
performing the pinching deformation along the collection

Pn = |ξn| = Π
⋃ (tk

j=1cj,n

)

on X . For given r, and for each Mn let Wn ∈ Teich(Tr) denote the corresponding
conformal boundary component of Mn. With respect to a fixed maximal partition
PT of ∪rTr, the Fenchel-Nielsen coordinates for Wn are the limiting Fenchel-Nielsen
coordinates for Xt along PT ∩ Tr. Hence, they do not depend on n and Wn is
constant; we set Wn = W .

We have
length

Mn
(ξn) = 0

for all n. By continuity of length [Br1, Thm. 7.1], we have

length
M

(µ) = 0.
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Since µ ∈ ML(S)+, it follows that each component of µ is non-realizable in M .
Thus ν = |µ| is a sub-lamination of E(M).

Let f : S → M denote the implicit marking on M , and let π1(Tr) denote
the subgroup of π1(S) induced by inclusion Tr ⊂ S after choosing a basepoint in
Tr. Since E(M) relatively fills S by lemma 3.3, to see that ν = E(M) it suffices
to show that the cover M̃(r) of M corresponding to f∗(π1(Tr)) is quasi-Fuchsian
(every lamination is realizable in a quasi-Fuchsian manifold, see [Th1, Prop. 8.7.7]
[CEG, Thm. 5.3.11]).

Let fn : S → Mn denote the implicit markings on Mn. For fixed r, the cover
of Mn corresponding to (fn)∗(π1(Tr)) is a quasi-Fuchsian manifold Q(W, Zn) ∈
QF (Tr). The cover Ỹr of Y corresponding to π1(Tr) (which is no longer of finite
type) admits a holomorphic inclusion into Zn, which is a contraction of the Poincaré
metric by the Schwarz lemma. Thus, there is a pair of simple closed curves α and β
in S(Tr) that bind Tr (i.e. i(α, γ)+i(β, γ) > 0 for any γ ∈ S(Tr)) and have uniformly
bounded length in Zn. Such a bound guarantees that Zn range in a compact subset
of Teich(Tr) (see e.g. [Th4, Prop. 2.4] [Ker]) so Q(W, Zn) converges to a quasi-
Fuchsian manifold Q(W, Z∞). Thus M̃(r) is quasi-Fuchsian, since it is the limit of
Q(W, Zn).

It follows that ν = E(M), and the theorem is proven.

4. Lower-semi-continuity

From now on, we view E as a map from quasi-isometry classes [M ] ∈ ∂BY /qi
to the quotient EL(S) of PL(S) under the projection [µ] 7→ |̂µ|. In this section we
investigate the behavior of E in the quotient topologies on domain and range.

Theorem 4.1. Let dimC (Teich(S)) > 1. Then the mapping E is strictly lower-
semi-continuous in the quotient topologies.

Again, ‘lower-semi-continuity’ has the interpretation:

Given [Mn] → [M ] any limit E∞ of {E([Mn])} satisfies E∞ ⊂ E([M ]),(4.1)

and strict lower-semi-continuity means there exists Mn → M for which the final
containment is proper. As remarked, when dimC (Teich(S)) = 1, E is a homeomor-
phism [Min3].

Proof: We first find a point of discontinuity for E (to prove strict lower-semi-
continuity). Since dimC (Teich(S)) > 1 we can find a pair of distinct isotopy classes
γ and δ in S with i(γ, δ) = 0. Let P ⊂ S be a maximal partition containing δ
and γ. Adjust the Fenchel-Nielsen coordinates of X ∈ Teich(S) along P so that
Xm,n ∈ Teich(S) has Fenchel-Nielsen coordinates

lengthδ(Xm,n) = 1/m and lengthγ(Xm,n) = 1/n

and all other coordinates equal to those of X . Then, as above, the sequence
{Q(Xm,n, Y )}∞m=1 converges to a limit Mn for which E(Mn) = γ. Likewise, the
sequence {Mn}∞n=1 converges to a limit M such that E(M) = δ t γ.

Just as a weakly convergent sequence of measures with constant support can-
not converge to a measure with larger support, there is no sequence of transverse
measures (weights) on the simple closed curve γ that converges in ML(S) to a
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transverse measure on γ t δ. Hence the quasi-isometry class of M is a point of
discontinuity of E as a map to EL(S) with the quotient topology.

To see that the map E is lower-semi-continuous in the sense of line 4.1, note
that for any convergent sequence Mn → M in ∂BY , and any convergent sequence
of measured laminations µn → µ with |µn| = E(Mn), we have

length
Mn

(µn) = 0

for each n. Continuity of length implies that length
M

(µ) = 0, and we conclude

|µ| ⊂ E(M).

Spinning maximal cusps. We briefly give another example of discontinuity of
E in the quotient topologies. We do this to motivate a new topology on the range,
which we introduce in the next section.

Let C ⊂ S be a maximal partition. Then the maximal cusp M(C) ∈ ∂BY is
the unique point for which α is parabolic for each α ∈ C. It is determined up to
isometry by the collection C (see, e.g. [Bers2], [Mc2]).

As above, assume dimC (Teich(S)) > 1, let C0 be a maximal partition for S,
and let γ t δ ⊂ S be isotopy classes of disjoint simple closed curves so that i(α, γ)
and i(α, δ) are non-zero for each α ∈ C0.

Let τγ and τδ be Dehn-twists about γ and δ respectively, and let

Cn = τn2

γ ◦ τn
δ (C0),

where n ∈ N. Consider any limit M of the sequence of maximal cusps {M(Cn)}∞n=0.

γ

α1

α2

α3

limn→∞ Cn

C0 = ∪αi

δ

Figure 2. Spinning maximal cusps. The Hausdorff limit of Cn = τn2

γ ◦ τn
δ (C0)

contains both γ and δ as measurable sub-laminations.

Notice that

1. Any sequence µn ∈ ML(S) of measures (weights) on Cn has projective
classes [µn] ∈ PL(S) converging to [1 ·γ]. Thus theorem 4.1 guarantees only
that γ is parabolic in M .
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2. One expects that both classes γ and δ are parabolic in M .3

The topology on PL(S) is insensitive to all but the maximal growth rate of
transverse measure. Our goal in the next section will be to formulate a topology
on EL(S) called the end-invariant topology that is sensitive to different orders of
convergence. Proving continuity of E in the end-invariant topology, we capture
more geometric information about general limits M .

5. Continuity in the end-invariant topology

Definition 5.1. The end-invariant topology on EL(S) is the topology of con-
vergence for which νn → ν if for any Hausdorff limit λH of any subsequence νnj ,
the maximal measurable sub-lamination η ⊂ λH is a sub-lamination of ν.

Continuity in the end-invariant topology relies on uniform estimates for the
shapes of train tracks in 3-manifolds.

Definition 5.2. A train track τ in a hyperbolic surface X ∈ Teich(S) is an
embedded 1-complex in X whose edges (branches) are C1 arcs meeting at vertices
(switches) so that each switch v has a neighborhood U ⊂ X for which τ ∩ U is a
collection of C1 arcs passing through with a common tangent line at v. We require
in addition that the double of each component of X − τ along the interiors of the
branches in its boundary has negative Euler characteristic.

A train-path r is a monotone C1 immersion r : R → X (r is “bi-infinite”) or
r : S1 → X (r is “closed”) with image in τ . A train track τ on X carries a geodesic
lamination λ if there is a C1 map p : X → X that is homotopic to the identity and
non-singular on the tangent spaces to the leaves of λ so that p sends each leaf of λ
to a train-path for τ . We say τ minimally carries λ if for each branch b of τ , there
is a train-path corresponding to a leaf of λ that traverses b.

A train track τ∗ in a marked hyperbolic manifold (f : S → M) ∈ AH(S) is
a train track τ on a hyperbolic surface (h : S → X) ∈ Teich(S), together with a
marking-preserving smooth map g : X → M so that g(τ) = τ∗. The surface X
serves to mark the train track τ∗ with homotopy information: we say τ∗ carries λ
if τ does.

To make a train-track τ carry more laminations, we may enlarge τ by adding
branches. For our purposes, we enlarge τ by adding branches b each endpoint
of which either terminates in a switch of τ or attaches to a simple closed curve
component of τ .

Finally, a train track τ in X (or in M) is ε-nearly-straight if each train path r
is C2 with geodesic curvature less than ε. An important property of nearly-straight
train tracks is the following: for any ε0 ∈ (0, 1) there is a “tracking constant”
Ctr > 1 so that for any ε ∈ (0, ε0) if τ is an ε-nearly-straight train track in X (resp.
M), any train path r lifts to an embedding r̃ : R → PH 2 into the projective unit
tangent bundle PH 2 of H 2 (resp. PH 3 ) that is smoothly homotopic to a complete
geodesic by an isotopy that moves each point a distance less than Ctrε. Assume
ε0 = 1/2 and let Ctr be the corresponding tracking constant.

When a closed train-path on an ε-nearly-straight train track is straightened to
its geodesic representative, its arc-length does not decrease too much: there is a

3This follows, for example, from the techniques of [KT] and [Br2] and a study of the geomet-
ric limit of M(Cn); we develop a point of view more closely aligned with the present techniques.
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continuous contraction bound K : [0, 1) → [1,∞) with K(ε) → 1 as ε → 0 so that
any arc α ∈ H n of geodesic curvature less than ε satisfies

`(α∗) ≥ 1
K(ε)

`(α)(5.2)

where α∗ is the geodesic representative of α rel-endpoints (see [Br1, §4] or [Min1]
for more on nearly-straight train tracks)

We employ these ideas to prove the following:

Theorem 5.3. The mapping E is a continuous surjection from the quotient
topology on ∂BY /qi to EL(S) with the end-invariant topology.

Proof: We have shown surjectivity in theorem 3.2. It remains to show continuity
in the end invariant topology.

Let Mn → M in ∂BY . After passing to a subsequence, let E(Mn) = En tend
to λH in the Hausdorff topology. For each n, let Pj,n ⊂ S be as constructed in the
proof of theorem 3.2 so that Pj,n → En in the Hausdorff topology as j →∞.

Arguing as in the proof of lemma 3.3, theorem 2.1 implies that given any
compact set K ∈ Mn, there is a J so that for all j > J no curve in Pj,n has a
geodesic representative intersecting K.

Let ν be any connected, measurable sub-lamination of λH . Suppose that ν
is realizable in M by a pleated surface g : X → M . Let K ⊂ M be a compact
set containing the radius 1 neighborhood N1(g(ν)) of g(ν), the locally-isometric
image of the geodesics in ν under g. By algebraic convergence, there are smooth,
marking-preserving homotopy equivalences qn : M → Mn that tend C∞ to a local
isometry on K. It follows that for any δ > 0, each geodesic leaf l ⊂ ν has image
qn(g(l)) with geodesic curvature less than δ for n � 0.

Therefore we may diagonalize as follows: there is a sequence jn → ∞ so that
Pjn,n = Pn converges to λH in the Hausdorff topology, and so that no curve in Pn

has geodesic representative intersecting the compact sets qn(K) for n � 0.
After passing to a further subsequence, there are curves cn ∈ Pn that converge

in the Hausdorff topology to a lamination λ′ so that ν ⊂ λ′. Applying the construc-
tion of nearly-straight train tracks in [Br1, Lem. 5.2, Cor. 5.3], there is a uniform
C depending only on S and the injectivity radius along the image g(ν) of ν in M
for which the following holds: for any ε > 0

1. there exists an ε-nearly-straight train track τ ⊂ M carrying ν, and
2. τ admits an enlargement τn that minimally carries cn with a Cε-nearly-

straight realization τ∗n in Mn for n � 0.

Choosing ε and δ sufficiently small, then, for n � 0, both the image qn(g(ν))
and the train track τ∗n lie close to the realization of ν in Mn and hence close to
each other: precisely, qn(g(ν)) lies within Ctr(Cε + δ) of τ∗n , since τ∗n carries ν. As
τ∗n also carries cn, and τ∗n is nearly-straight, cn is realizable in Mn with geodesic
representative c∗n. Indeed, c∗n lies within CtrCε of τ∗n and thus within Ctr(2Cε+δ) of
qn(g(ν)). We have a contradiction, since either cn is non-realizable, or its geodesic
representative c∗n lies outside qn(K) for all n sufficiently large.

The contradiction implies that ν is not realizable in M , and hence ν ⊂ E(M).
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6. Convergence in Bers’ compactification

The above methods bear on the question of how the divergent surfaces Xn ∈
Teich(S) for which Q(Xn, Y ) → M ∈ ∂BY and the quotient manifolds Mn =
Q(Xn, Y ) determine the end invariant E(M) of their limit in Bers’ boundary.

A direct consequence of theorem 4.1 is the following:

Theorem 6.1. Let Xn → [µ] in Thurston’s boundary PL(S) for Teich(S).
Then for any limit M ∈ ∂BY of {Q(Xn, Y )}, we have |µ| ⊂ E(M).

Proof: In [Th5], Thurston constructs measured laminations µn so that µn → µ
in ML(S), and lengthXn

(µn) → 0. The theorem follows from an application of
theorem 4.1.

As with maximal cusps, however, the support |µ| of the limit lamination [µ] ∈
PL(S) is often a small piece of E(M). We now formulate a construction to obtain
partitions Π(Mn) of S using the limiting geometry of Mn so that Π(Mn) converge
to E(M) in the end-invariant topology. We remark that various such constructions
are possible, requiring various levels of detail. We present a simple one.

Constructing partitions. By a theorem of Bers (see [Bus, Thm. 5.2.6]), there
is a uniform constant B > 0 depending only on S so that any given X ∈ Teich(S)
admits a maximal partition Π all of whose elements γ satisfy

lengthX(γ) < B.

Consider a sequence Mn = Q(Xn, Y ) converging to M ∈ ∂BY , and consider
the set Bn ⊂ S consisting of curves of length less than B on Xn. For each n, let β1

n

denote an element of Bn that minimizes the ratio
lengthMn

(β)
lengthY (β)

over all elements β ∈ Bn. Continuing inductively, let βk
n be an element of

Bn ∩ S(S − β1
n t . . . t βk−1

n )

that minimizes the above ratio.
Let k0 denote the maximal k for which the ratio

lengthMn
(βk

n)
lengthY (βk

n)
→ 0,

and let
Π(Mn) = β1

n t . . . t βk0
n .

Then we have the following.

Theorem 6.2. Let Xn → ∞ in Teich(S) determine quasi-Fuchsian manifolds
Mn = Q(Xn, Y ) → M in ∂BY . Then the partitions Π(Mn) converge to E(M) in
the end-invariant topology.

Proof: Consider a Hausdorff limit λH of Π(Mn). If α ∈ S is an isolated simple
closed curve in λH , then α lies in infinitely many Π(Mn) so we have

inf
n
{lengthMn

(α)} = 0.

Hence α ⊂ E(M), by theorem 2.3.
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For any other measurable sublamination ν ⊂ λH there is a sequence cn ∈
Π(Mn) so that lengthY (cn) →∞ and ν lies in the Hausdorff limit of cn after passing
to a subsequence. Assume ν is realizable in M . As in the proof of theorem 5.3,
there is an ε-nearly-straight train track τ ⊂ M carrying ν, and a uniform C > 1
so that τ admits enlargements τn minimally carrying cn with Cε-nearly-straight
realizations τ∗n in Mn, for n � 0.

Given a branch b of τn, let mb(cn) be the weight cn assigns to b; i.e. the number
of times cn traverses b. Then by [Br1, Cor. 5.3] given any b ∈ τ , the weight mb(cn)
grows without bound. Since the total length `τ∗n(cn) of the train-path homotopic
to cn on τ∗n satisfies

lengthMn
(cn) ≥ 1

K(Cε)
`τ∗n(cn),

where K(Cε) is the contraction bound of equation 5.2 of §5 (see also [Br1, §4]), it
follows that lengthMn

(cn) diverges.
Since, however, we have

lengthMn
(cn) ≤ 2lengthXn

(cn),

by [Bers2, Thm. 3] or [Mc1, Prop. 6.4], it follows that lengthMn
(cn) < 2B, con-

tradicting the divergence of lengthMn
(cn). Thus ν is non-realizable, and therefore

ν lies in E(M).

Convergence to the boundary in BY . We unify these two perspectives on
E(M) as follows. Given M ∈ ∂BY , the conformal boundary ∂M − Y is a (possibly
empty) union X of hyperbolic surfaces. Given any sequence Mn ∈ BY converging
to M , let Xn = ∂Mn−Y . We construct partitions Π(Mn) of Xn, exactly as above:
Choose pairwise disjoint curves β1

n, . . . , βk0
n from the set Bn ⊂ S(Xn) of curves of

length less than B on Xn so that each βk
n minimizes the ratio

lengthMn
(β)

lengthY (β)

over all β ∈ Bn ∩ S(Xn − β1
n t . . . t βk−1

n ) and so that we have

lengthMn
(βk0

n )

lengthY (βk0
n )

→ 0.

Then the resulting union E(Mn) tΠ(Mn) is a geodesic lamination on S.

Corollary 6.3. The laminations E(Mn) t Π(Mn) converge to E(M) in the
end-invariant topology.

Proof: Pass to a subsequence so that E(Mn) t Π(Mn) converges to λH in the
Hausdorff topology. Then for any connected measurable sub-lamination ν ⊂ λH ,
there is a further subsequence so that ν lies either in the Hausdorff limit of the
partition Π(Mn) or the laminations E(Mn). It follows from theorems 2.3 and the
proof of theorem 6.2 that ν lies in E(M).
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7. The failure of the Hausdorff topology to predict the end-invariant

In this section we address the questions of whether the E can have a continu-
ous inverse in the end-invariant topology, and whether limiting values of E give a
complete description of the end-invariant.

The inverse E
−1 is known to be well defined on points |µ| of PL(S)/|.| for

which |µ| is a collection of simple closed curves; each M for which E(M) = |µ| is
quasi-isometrically unique (M is a geometrically finite cusp).4 In the end-invariant
topology, there are abundant discontinuities of E−1 on this set arising from approxi-
mation by maximal cusps. For example, given a single simple closed curve γ ∈ S and
an M for which E(M) = γ, there are maximal cusps M(Cn) converging to M by the
main result of [Mc2]. By theorem 5.3 any Hausdorff limit of Cn has γ as its unique
measurable sub-lamination. In the end-invariant topology, however, any measur-
able lamination λ containing γ is a limit of Cn, and when dimC (Teich(S)) > 1
there are infinitely many such λ. In this case, then, γ is necessarily a point of
discontinuity for E−1 in the end-invariant topology.

In the setting of convergent maximal cusps M(Cn) → M , where E(M(Cn))
cannot be enlarged, it is natural to ask whether the maximal measurable sub-
lamination ν of any Hausdorff limit of {Cn} gives a complete picture of the end-
invariant E(M). If Cn converges in the Hausdorff topology to a lamination that
does not relatively fill (such examples are easy to arrange), lemma 3.3 shows that
at the very least one must enlarge ν to the lamination ν̂ (by adding any missing
curves in its implicit partition) to hope for the equality ν̂ = E(M).

We conclude this paper with an example that shows that adding the implicit
partition for ν is not in general enough to obtain this equality: new parabolics can
arise that are neither contained nor implicit in ν.

Theorem 7.1. Implicit Cusps Let dimC (Teich(S)) > 1, and let γ lie in S.
Then for any α in S(S−γ), there are maximal partitions Cn → λH in the Hausdorff
topology and associated maximal cusps M(Cn) → M in ∂BY for which:

1. γ is the maximal measurable sub-lamination of λH , and
2. α lies in E(M).

Proof: By the assumption that dimC (Teich(S)) > 1, there are infinitely many α
satisfying the hypotheses.

We construct the sequence of maximal partitions Cn as follows. Let ϕ ∈
Mod(S) be a mapping class so that

1. ϕ fixes α,
2. ϕ restricts to a pseudo-Anosov mapping class on the closure of the compo-

nent T of S − α containing γ
3. ϕ is the identity otherwise

(see [FLP, Exp. 9], [Th3], [Br2]). Let τγ ∈ Mod(S) be a Dehn twist about
the curve γ. Let P0 be a maximal partition, all of whose elements cross α. Let
ϕk(P0) = Pk. By assigning weight 1 to each element of Pk we obtain a sequence
{[Pk]} ⊂ PL(S), that converges to a limit [µ∞] after passing to a subsequence.

Let µu ∈ ML(S) denote the unstable lamination for the pseudo-Anosov restric-
tion of ϕ to T ; i.e. µu is the unique measured lamination for which ϕ(µu) = cµu

4Y. Minsky recently announced E−1 is well defined on laminations of bounded type [Min4].
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with c > 1. Noting that

i(µu, ϕk(P0)) = i(ϕ−k(µu), P0) =
i(µu, P0)

ck
,

it follows from continuity of i(., .) (see [Bon1, Prop. 4.5]) that i(µu, µ∞) = 0.
Let λ be a Hausdorff limit of a subsequence of Pk. If α separates S, then let

T ′ = S − T . Then ϕ(β) = β for each β ∈ S(T ′), so i(β, Pk) does not depend on k
(and is therefore bounded). Thus, λ contains no measurable sub-lamination η for
which η = |µ′| and µ′ ∈ML(T ′).

Hence, either [µ∞] = [µu] or α is a sub-lamination of µ∞. We wish to avoid
this possibility, so we adjust each Pk by the power mk ∈ Z of an α-Dehn twist τα

for which the total length of

P ′k = τmk
α (Pk)

on Y is minimized. It follows that the curves in P ′k and α realized as geodesics on
Y intersect with angle uniformly bounded away from 0.

For any β ∈ S(S − α) we have i(β, P ′k) = i(β, Pk), so the above intersection
number arguments apply to P ′k: after passing to perhaps further subsequences, we
have [P ′k] → [µu] in PL(S) and P ′k converge as geodesic laminations to a Hausdorff
limit λ′ with maximal measurable sublamination |µu| (see figure 3).

µu

λH

γ

α

λ′

Figure 3. An implicit cusp: E(M) = γ t α, but α does not lie in λH .

Now consider the action of the Dehn twist τγ on λ′. Since i(µu, γ) > 0 and
every leaf of |µu| is dense in |µu|, every leaf of |µu| crosses γ infinitely in each
direction. Each leaf of λ′ is either a leaf of |µu| or asymptotic to leaves of |µu| in
each direction, so every leaf of λ′ crosses γ infinitely often in each direction. The
Hausdorff limit λH of {τn

γ (λ′)}∞n=1 consists of γ together with a finite number of
pairwise disjoint bi-infinite geodesics that spiral into γ from either side (figure 3).

Thus, γ is the only measurable sub-lamination of λH , and λH crosses the simple
closed curve α transversely (again, as geodesics on Y ). Diagonalizing, for each n we
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choose kn so that τn
γ (P ′kn

) converges to λH in the Hausdorff topology as n → ∞.
Let

Cn = τn
γ (P ′kn

).

We claim that by enlarging kn further we may guarantee that the maximal
cusps Mn = M(Cn) ∈ ∂BY satisfy

length
Mn

(α) <
1
n

.(7.3)

To see this, note that if we let k tend to ∞ with n fixed, the maximal cusps
{M(τn

γ (P ′k))}∞k=1 converge up to subsequence to a limit M∞(n) ∈ ∂BY with the
property that

|τn
γ (µu)| ⊂ E(M∞(n)).

Since for each n the implicit partition P̂ (|τn
γ (µu)|) of |τn

γ (µu)| is the single sim-
ple closed curve α, lemma 3.3 guarantees that α lies in E(M∞(n)). Thus, α is
parabolic in M∞(n), so the claim (inequality 7.3) follows by continuity of length
(theorem 2.3).

Applying theorem 2.3 once again, we have that α is parabolic in M .

A concluding remark: The reader familiar with geometric or Gromov-Hausdorff
convergence of hyperbolic manifolds will recognize the similarity of the above ex-
ample to the main example of [KT, §3] and others like it (cf. [Br2]). In the case
above, the geometric limit MG covered by M has a degenerate end that forces an
implicit cusp at α, as well as a rank-two cusp with core-curve γ. The parabolic
α lifts to M while the cusp at γ provides an obstruction to lifting the degenerate
end. It would seem that a complete understanding of how values of E vary on Bers
boundary depends, like many issues in the deformation theory, on developing a
better understanding of the full spectrum of possible geometric limits of sequences
{Mn} ⊂ ∂BY .
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